
BAYESIAN CLASS-BASED LANGUAGE MODELS

Yi Su

Nuance Communications, Inc.
1500 rue University, suite 935, Montréal, Québec H3A 3S7, Canada

Yi.Su@nuance.com

ABSTRACT
By capturing the intuition of “similar words appear in similar
context”, the Class-based Language Model (CLM) has found
success from research projects to business products. How-
ever, most CLMs make a simplifying assumption that one
word belongs to one class, which models poorly the fact that
many words have multiple senses thus should belong to mul-
tiple classes.

We propose a Bayesian formulation of the CLM, where a
many-to-many mapping between words and classes, i.e., soft-
clustering, are naturally supported. A simple collapsed Gibbs
sampler is provided to carry out the inference. Not only did
we achieve a 22% relative reduction in perplexity on a Wall
Street Journal corpus, but also reduced the word error rate of
a state-of-the-art conversational telephony speech recognizer
by 6% relative.

Index Terms— class-based language model, Bayesian
statistics, Gibbs sampling, hierarchical Pitman-Yor process

1. INTRODUCTION

The term “class-based language model” refers to not one, but
a family of language models which make use of word classes
to improve their performance. Since [1], a lot of research
has been done to build more sophisticated model and/or find
better word classes.

Most CLMs maintain a hard-clustering assumption that
one word belongs to one class. While it might simplify the
problem and reduce the computational cost, it certainly fails
to account for the fact that one word can have multiple senses.
Soft-clustering, where one word belongs to many classes with
probability, for bi-gram language model was explored in [2]
using Expectation-Maximization.

Bayesian methods have been applied to language mod-
eling as early as in [3] but did not gain popularity until a
Bayesian language model based on Pitman-Yor process with
state-of-the-art performance was introduced in [4].

The closest previous work to ours is a bi-gram version
of Latent Dirichlet Allocation (LDA) [5], which assumed that

Many thanks to Max Bisani, Ernie Pusateri, Wilson Tam and Paul Vozila
for stimulating discussions.

the corpus was organized in documents. While “document” is
a natural concept for topic modeling or information retrieval,
we argue that it is neither natural, nor always available, in
language modeling.

The rest of the paper is organized as follows: Section 2 re-
caps the classical hard-clustering CLM. In Section 3, we pro-
vide the formal definition of, and an inference algorithm for, a
soft-clustering CLM. In Section 4 we present a fully Bayesian
CLM based on hierarchical Pitman-Yor process. Experimen-
tal setups and results are presented in Section 5. We conclude
in Section 6.

2. CLASS-BASED LANGUAGE MODELS

2.1. Model definition

In this paper, the Class-based Language Model is defined as

P (w | h) = P (c(w) | h)P (w | c(w), h), (1)

where c(w) is the unique class to which the word w belongs
and h is the conditioning history. We call P (c(w) | h) the
class model and P (w | c(w), h), the word model.

2.2. Finding classes

Two popular algorithms for finding the word classes are ag-
glomerative clustering [1] and exchange-based clustering [6].
The two methods have their own pros and cons but a carefully
implemented exchange-based clustering usually runs much
faster than its agglomerative counterpart does.

2.3. Random clustering

Inspired by the random forest language model [7], [8] suc-
cessfully applied the idea of randomization to the CLM. By
averaging a number of CLMs with word classes derived from
randomly initialized exchange-based clustering, their model
becomes

P (w | h) = 1

K

K∑
k=1

Pk(ck(w) | h)Pk(w | ck(w), h), (2)

where K is the number of CLMs and ck(w) is the unique
class to which the word w belongs in the k-th CLM.

3. SOFT-CLUSTERING CLMS

3.1. Model definition

The Soft-clustering Class-based Language Model (SCLM)
is defined as

P (w | h) =
∑
c∈C

P (c | h)P (w | c, h), (3)

where C is the set of all word classes.

3.2. Random sampling

Given a class assignment of all words in the training set, we
can estimate the class model P (c | h) and the word model
P (w | c, h) as a regular n- and (n+1)-gram LM with Kneser-
Ney smoothing and compute the probability given that partic-
ular class assignment as

PA(w | h) =
∑
c∈C

PA(c | h)PA(w | c, h), (4)

where A denotes a class assignment for all words in the train-
ing set. However, the number of possible class assignments
is |C|N , where N is the number of words in the training set
and |C| is the number of classes. We cannot enumerate this
huge space so we take samples from it. Therefore our model
becomes

P (w | h) =
∑
A∈A

P (A)
∑
c∈C

PA(c | h)PA(w | c, h)

≈ 1

K

K∑
k=1

∑
c∈C

PAk
(c | h)PAk

(w | c, h), (5)

where K is the number of samples and A is the set of all
possible class assignments.

3.3. Inference algorithm

The key to the SCLM is to draw samples of class assignments.
We use a collapsed Gibbs sampler [9], which is an instance of
Markov Chain Monte Carlo. Let ci be the class assignment of
the i-th word in the training corpus, wi.

P (ci = j | c¬i,w) ∝ P (ci = j | c¬i,w¬i)
· P (wi | ci = j, c¬i,w¬i), (6)

where c¬i is the set of class assignments except ci and w¬i is
the set of training word tokens exceptwi. The first term of the
right-hand side of Equation 6 can be computed with a “leave-
one-out” version of our class model P¬i(c | h) and the second
term can be computed with a “leave-one-out” version of our

Input: Training ngrams W = {(h,w)}, counts t(h,w)
Output: Class assignment A, discounts Dc and Dw

1 begin
2 A← sampleClusters(W);
3 Update counts for class model with A;
4 Dc ← estimateDiscounts(class model);
5 Update counts for word model with A;
6 Dw ← estimateDiscounts(word model);
7 Return A, Dc and Dw;
8 end

Algorithm 1: sampleGibbsOnce(W)

Input: Training ngrams W = {(h,w)}, counts t(h,w)
and current corpus class assignment Ac

Output: Class assignment A
1 begin
2 A← φ;
3 foreach h ∈ {h′ : ∃w, (h′, w) ∈W} do
4 foreach w ∈ {w′ : (h,w′) ∈W} do
5 foreach j ∈ C do
6 θj ← P (c(w) = j | Ac,W);

// by Equation 6
7 end
8 for i← 1 to t(h,w) do
9 c(wi) ∼ Multinomial({θj});

10 A← A ∪ {c(wi)};
11 end
12 end
13 end
14 Return class assignment A;
15 end

Algorithm 2: sampleClusters(W)

word model P¬i(w | c, h). Our Gibbs sampling procedure is
outlined in Algorithms 1 and 2.

The procedure “estimateDiscounts()” is a widely used
method of estimating Kneser-Ney smoothing discounts based
on “counts of counts” [10]:

d =
n1

n1 + 2n2
, (7)

where n1 and n2 are the numbers of n-grams appear in the
training set exactly once and twice, respectively.

4. FULLY BAYESIAN FORMULATION

4.1. Hierarchical Pitman-Yor language model

As a prerequisite, we recapitulate the Hierarchical Pitman-
Yor Language Model (HPYLM) [4], a Bayesian language
model assuming the following generative process:

1. Choose parameters ej and µj for j ∈ {0, 1, · · · , n−1}:

ej ∼ Beta(1, 1)
µj ∼ Gamma(1, 1) (8)

2. For every wordwi and its history hi = wi−1 · · ·wi−n+1:

Hφ(w) ∼ PY(e0, µ0, H0(w))

Hwi−1(w) ∼ PY(e1, µ1, Hφ(w))

Hwi−1wi−2(w) ∼ PY(e2, µ2, Hwi−1(w))

· · ·
wi | hi ∼ Mult(Hhi(w)). (9)

H0(w) is a uniform distribution over the vocabulary. PY(·)
stands for a Pitman-Yor process; Mult(·) stands for a multi-
nomial distribution. [4] convincingly showed that an n-gram
LM with interpolated Kneser-Ney smoothing could be re-
garded as an approximation to the HPYLM, both in theory
and in practice.

4.2. Class-based hierarchical Pitman-Yor LM

Having established the HPYLM as the Bayesian counterpart
of Kneser-Ney smoothing, we can have a Bayesian version
of the CLM by estimating the class and word models with
HPYLMs, instead of Kneser-Ney smoothing. We call this
model the Class-based Hierarchical Pitman-Yor Language
Model (CHPYLM).

4.3. Soft-clustering class-based HPY LM

The Soft-clustering Class-based Hierarchical Pitman-Yor
Language Model (SCHPYLM) assumes the following gen-
erative process:

1. Choose parameters dj and θj for j ∈ {0, 1, · · · , n−1}:

dj ∼ Beta(1, 1)
θj ∼ Gamma(1, 1) (10)

2. Choose parameters ej and µj for j ∈ {0, 1, · · · , n}:

ej ∼ Beta(1, 1)
µj ∼ Gamma(1, 1) (11)

3. For every wordwi and its history hi = wi−1 · · ·wi−n+1:

(a) Generate ci:

Gφ(c) ∼ PY(d0, θ0, G0(c))

Gwi−1
(c) ∼ PY(d1, θ1, Gφ(c))

Gwi−1wi−2
(c) ∼ PY(d2, θ2, Gwi−1

(c))

· · ·
ci | hi ∼ Mult(Ghi

(c)), (12)

(b) Generate wi:

Hφ(w) ∼ PY(e0, µ0, H0(w))

Hci(w) ∼ PY(e1, µ1, Hφ(w))

Hciwi−1(w) ∼ PY(e2, µ2, Hci(w))

Hciwi−1wi−2(w) ∼ PY(e3, µ3, Hciwi−1(w))

· · ·
wi | ci, hi ∼ Mult(Hcihi(w)). (13)

G0(c) is a uniform distribution over the set of classes;H0(w),
over the set of words, i.e., the vocabulary.

The collapsed Gibbs sampler for the SCLM can be easily
adapted to the SCHPYLM by replacing the routine to estimate
Kneser-Ney discounts for a routine to sample the parameters
of the HPYLM, such as the Gibbs sampler described in [11].

5. EXPERIMENTS

5.1. Perplexity results

We used Wall Street Journal portion of the Penn Treebank
and preprocessed the text by lowercasing words, removing
punctuations and replacing numbers with the “N” symbol.
Sections 00-22 (1,003,324 words) and sections 23-24 (82,430
words) were used as training and testing sets, respectively.
The vocabulary size was 10k, including a special token for
unknown words.

The orders of our models were all 3. After building a
baseline 3-gram LM with Kneser-Ney smoothing, we built
CLMs and SCLMs with the numbers of classes being expo-
nents of 2. Then we built Bayesian counterparts of those mod-
els by replacing Kneser-Ney n-gram LMs with HPYLMs, as
described in Section 4. For each experiment, 100 samples
and 800 iterations of burn-in are used. We plotted the results
in Figure 1, where the x-axis of the plot is in log-scale, and
summarized them in Table 1.

 110

 115

 120

 125

 130

 135

 140

 145

 150

 2 4 8 16 32 64 128 256 512 1024

pe
rp

le
xi

ty

number of classes

Kneser-Ney LM

CLM

SCLM

Hierarchical Pitman-Yor LM

CHPYLM

SCHPYLM

Fig. 1. Perplexity as function of the number of classes

Model Best Config. Perplexity
Kneser-Ney – 146.0
CLM 128 classes 129.8
SCLM 256 classes 119.5
Hier. Pitman-Yor – 142.2
CHPYLM 128 classes 125.2
SCHPYLM 1024 classes 114.2

Table 1. Perplexity result highlights

Model w/o Interp. w/ Interp.
Kneser-Ney 14.4 13.5
CLM 14.2 13.4
SCLM 13.7 13.3
Hier. Pitman-Yor 14.1 13.4
CHPYLM 13.7 13.2
SCHPYLM 13.5 13.1

Table 2. Lattice-rescoring WERs on IBM RT-04 CTS

5.2. Word error rates

For speech recognition results, we used a lattice-rescoring
setup with the IBM 2004 Rich Transcription (RT-04) Con-
versational Telephony Speech (CTS) system [12]. We trained
all models with 4-grams, 16 classes, 50 samples and 100 it-
erations of burn-in on 20M words of Fisher data. The test set
was the 2004 development data (DEV04) with 38K words.
The vocabulary size was 30K.

We rescored the lattices generated from the first pass de-
coding of the IBM RT-04 CTS system using models built from
Fisher data alone, as well as interpolating them with a big LM
built from many other corpora, including a 525M words of
“Fisher-like” web data collected by the University of Wash-
ington.

As shown in Table 2, SCHPYLM was able to reduce the
WERs by 0.9% absolute without interpolation and 0.4% ab-
solute with interpolation. Both reductions were statistically
significant with p < 0.001.

6. CONCLUSIONS

We proposed the Soft-clustering Class-based Hierarchical
Pitman-Yor Language Model (SCHPYLM), a fully Bayesian
class-based language model, and provided a collapsed Gibbs
sampler to carry out the inference. The perplexity results on
the Wall Street Journal part of Penn Treebank were among
the best ones previously reported. Lattice rescoring on the
IBM RT-04 CTS system with a SCHPYLM resulted in a
statistically significant improvement.

7. REFERENCES

[1] P. F. Brown, V. J. D. Pietra, P. V. deSouza, J. C. Lai, and
R. L. Mercer, “Class-based n-gram models of natural
language,” Computational Linguistics, vol. 18, no. 4, pp.
467–479, 1992.

[2] L. Saul and F. Pereira, “Aggregate and mixed-order
Markov models for statistical language processing,” in
Proceedings of the Conference on Empirical methods in
natural language processing, 1997.

[3] D. J. C. MacKay and L. C. B. Peto, “A hierarchi-
cal Dirichlet language model,” Natural Language En-
gineering, vol. 1, no. 3, pp. 1–19, 1994.

[4] Y. W. Teh, “A hierarchical Bayesian language model
based on Pitman-Yor processes,” in Proceedings of the
21st International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association for
Computational Linguistics, 2006, pp. 985–992.

[5] H. M. Wallach, “Topic modeling: beyond bag-of-
words,” in Proceedings of the 23rd International Con-
ference on Machine Learning, 2006, pp. 977–984.

[6] S. Martin, J. Liermann, and H. Ney, “Algorithms for bi-
gram and trigram word clustering,” Speech Communica-
tion, vol. 24, no. 1, pp. 19–37, 1998.

[7] P. Xu and F. Jelinek, “Random forests in language mod-
eling,” in Proceedings of 2004 Conference on Empirical
Methods in Natural Language Processing, D. Lin and
D. Wu, Eds. Barcelona, Spain: Association for Com-
putational Linguistics, 2004, pp. 325–332.

[8] A. Emami and F. Jelinek, “Random clusterings for lan-
guage modeling,” in Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, vol. 1, March 2005, pp. 581–584.

[9] T. L. Griffiths and M. Steyvers, “Finding scientific top-
ics,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 101, pp. 5228–
5235, April 2004.

[10] H. Ney, U. Essen, and R. Kneser, “On structuring proba-
bilistic dependencies in stochastic language modelling,”
Computer Speech and Language, vol. 8, pp. 1–38, 1994.

[11] Y. W. Teh, “A Bayesian interpretation of interpolated
Kneser-Ney,” School of Computing, National Univer-
sity of Singapore, Tech. Rep. TRA2/06, 2006.

[12] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
and G. Zweig, “The IBM 2004 conversational telephony
system for rich transcription,” in Proceedings of IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing, 2005, pp. 205–208.

