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Introduction

Motivation 1/2

Why does Random Forest Language Model (RFLM) [Xu and Jelinek,
2004] work?

A collection of randomized Decision Tree Language Models
Interpolated with equal weights
...which looks awfully like a typical day of Bayesian inference by
sampling

Hypothesis: RFLM works because it approximates a Bayesian model

The Bayesian model that it approximates should work even better

Yi Su Bayesian Class-based Language Models July 27, 2015 3 / 18



Introduction

Motivation 2/2

Can Latent Dirichlet Allocation (LDA) [Blei et al, 2003] be applied to
language modeling?

Many have tried [Tam and Schultz, 2005 & 2006; Hsu and Glass 2006;
Heidel et al, 2007; Liu and Liu, 2008]
But none feels “right”

Most of them focus on adaptation
The concept of “document” is forced onto the problem of language
modeling

Idea: consider all words following a history as a “document”

Then a “topic” is nothing but a word class!
LDA simply models a uni-gram distribution with a “mixture of
multinomials”
Which is exactly the idea behind the class-based language model
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Class-based Language Models

What is a Class-based Language Model?

A large family of language models which use word classes

Intuition: similar words appear in similar context

Most of them maintain a hard-clustering assumption

One word belongs to one class

Definition
P(w | h) = P(c(w) | h)P(w | c(w), h) (1)

Terminology

Class model: P(c | h)
Word model: P(w | c , h)
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Class-based Language Models

Finding Classes

Agglomerative clustering [Brown et al, 1992]

Start with one word per class
Iteratively combine two classes to increase the log likelihood
Until the desired number of classes is reached

Exchange-based clustering [Martin et al, 1998]

Start with an initial assignment of words to classes
Iteratively move one word to another class to increase the log likelihood
Until a stopping criterion is met

Random clustering [Emami and Jelinek, 2005]

Averaging many CLMs with word classes derived from randomly
initialized exchange-based clustering gives better results.

P(w | h) =
1

K

K∑
k=1

Pk(ck(w) | h)Pk(w | ck(w), h), (2)
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Soft-clustering Class-based Language Models

A Bayesian Formulation of CLMs: First Attempt

Generative process: for every word wi and its history hi
Generate ci :

ci | hi ∼ Mult(Ghi (c)) (3)

Generate wi :
wi | ci , hi ∼ Mult(Hcihi (w)) (4)

Predictive probability

P(w | h) =
∑
c∈C

P(c | h)P(w | c , h) (5)

Bayesian predictive probability

P(w | h) =
∑
A∈A

P(A)
∑
c∈C

PA(c | h)PA(w | c, h) (6)

where A denote a class assignment of all words in the training text
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Soft-clustering Class-based Language Models

Soft-clustering Class-based Language Models

Effectively replaced the hard-clustering assumption with
soft-clustering

One word belongs to any class with certain probability

Inference

Model does not subscribe itself to any inference algorithm
Inference by sampling

P(w | h) =
∑
A∈A

P(A)
∑
c∈C

PA(c | h)PA(w | c, h)

≈ 1

K

K∑
k=1

∑
c∈C

PAk
(c | h)PAk

(w | c , h) (7)
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Soft-clustering Class-based Language Models

Sampling

Collapsed Gibbs sampler, a Markov Chain Monte Carlo method,
comes natural to this model

For every class assignment ci of the word wi

Given everything else, compute its distribution by

P(ci = j | c¬i ,w) ∝ P(ci = j | c¬i ,w¬i ) · P(wi | ci = j , c¬i ,w¬i ) (8)

Sample ci from this newly computed distribution

Repeat above until the assignment reaches steady state

Given a complete class assignment of all words in the training text,
both class and word models are just regular n-gram language models!

Two terms on the right hand side can be computed with
“leave-one-out” versions of class and word models, respectively

Taking multiple samples is trivially parallelizable
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Soft-clustering Class-based Hierarchical Pitman-Yor LMs

Hierarchical Pitman-Yor Language Models

Previous model is still not “Bayesian enough”

After sampling, class and word models are both built with Kneser-Ney
(KN) smoothing
We need a Bayesian version of KN smoothing

Smoothing is to frequentists as prior is to Bayesians

Hierarchical Pitman-Yor (HPY) prior is the Bayesian counterpart of KN
smoothing [Teh, 2006]
Or KN smoothing is a frequentist approximation of HPY

Plug and play...
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Soft-clustering Class-based Hierarchical Pitman-Yor LMs

A Bayesian Formulation of CLMs: Second Attempt

For every word wi and its history hi = wi−1 · · ·wi−n+1:

Generate ci :

Gφ(c) ∼ PY(d0, θ0,G0(c))

Gwi−1(c) ∼ PY(d1, θ1,Gφ(c))

· · ·
ci | hi ∼ Mult(Ghi (c)), (9)

Generate wi :

Hφ(w) ∼ PY(e0, µ0,H0(w))

Hci (w) ∼ PY(e1, µ1,Hφ(w))

Hciwi−1(w) ∼ PY(e2, µ2,Hci (w))

· · ·
wi | ci , hi ∼ Mult(Hcihi (w)). (10)
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Soft-clustering Class-based Hierarchical Pitman-Yor LMs

Soft-clustering Class-based Hierarchical Pitman-Yor LMs

For completeness,

Choose parameters dj and θj for j ∈ {0, 1, · · · , n − 1}:

dj ∼ Beta(1, 1)

θj ∼ Gamma(1, 1) (11)

Choose parameters ej and µj for j ∈ {0, 1, · · · , n}:

ej ∼ Beta(1, 1)

µj ∼ Gamma(1, 1) (12)

Inference by sampling
Even the sampler is plug and play

Sample class assignment given class and word models
Sample class model given class assignment and word model
Sample word model given class assignment and class model
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Experimental Results

Perplexity

Setup
1M words Wall Street Journal (WSJ), 10K vocabulary, 3-grams
100 samples per experiment, 800 iterations of burn-in
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Experimental Results

Word Error Rate

Setup

Lattice-rescoring
IBM 2004 Rich Transcription Conversational Telephony Speech system
20M words Fisher data, 30K vocabulary, 4-grams
Interpolation with a big LM built from many other sources

Model w/o Interp. w/ Interp.
Kneser-Ney 14.4 13.5
CLM 14.2 13.4
SCLM 13.7 13.3

Hier. Pitman-Yor 14.1 13.4
CHPYLM 13.7 13.2
SCHPYLM 13.5 13.1
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Experimental Results

Burn-in and Mixing
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Experimental Results

Probabilistic Word Embeddings

P(c | w) =

∑
h∈L P(c | h)P(w | c , h)P(h)

P(w)
(13)
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Conclusions

Conclusions

We proposed

Two Bayesian class-based LMs which naturally support soft-clustering
A simple collapsed Gibbs sampler for inference

Great performance in perplexity and word error rate

22% perplexity reduction on WSJ
6% WER reduction on IBM RT-04 CTS

Model averaging is a powerful idea

Either frequentist (RFLM, random clustering) or Bayesian (our models)
Good ideas converge ,
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Conclusions

Thank you!
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