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Introduction

Prosody:

•A wide range of suprasegmental properties: tone, intonation, stress, break, etc.
•Many applications: disfluency and sentence boundary detection, topic segmenta-

tion, spoken language parsing, etc.
•We are interested in usingprosodic breaksfor language modeling.

Random forest language model (RFLM):

•A collection of randomized decision tree language models
•Outperforms then-gram language model in perplexity and word error rate
•Able to integrate information from various sources by asking new questions

Example:

1. whatsort ofbenefits would you like to get from a big company/1
2. it justsort of/2happens automatically/1

Prosodic Language Models

Speech Recognition With Side Information

•Proposal 1: IfS is hidden, then

W ∗ = argmax
W

P(W |A) = argmax
W

P(A|W )P(W ), (1)

whereP(W ) = ∑S P(W,S).
•Proposal 2: IfS is observable, then

(W,S)∗ = argmax
W,S

P(W,S|A) ≈ argmax
W,S

P(A|W )P(W,S). (2)

•Are prosodic breaks hidden or observable?
–Although, strictly speaking, only acoustic features are observable, prosodic

breaks can be estimated from acoustic features with high precision.
–83.12% for predicting a 3-valued break on annotated Switchboard. (Hale et al,

2006)

Joint Model of Words and Breaks

P(W,S) ≈
m

∏
i=0

P(wi,si|w
i−1
i−n+1,s

i−1
i−n+1) (3)

•Tuple Model: Letti = (wi,si), for all 0≤ i ≤ m. We have

P(wi,si|w
i−1
i−n+1,s

i−1
i−n+1) = P(ti|t

i−1
i−n+1). (4)

•Decomposed Model:

P(wi,si|w
i−1
i−n+1,s

i−1
i−n+1) = P(wi|w

i−1
i−n+1,s

i−1
i−n+1)P(si|w

i
i−n+1,s

i−1
i−n+1). (5)

Random Forest Language Models

Definitions

•N-gram language model
P(w|h) = P(w|Φn(h)), (6)

whereΦn(h) maps(n−1) suffix-sharing histories into one class.
•Decision tree language model

P(w|h) = P(w|ΦDT(h)), (7)

whereΦDT(h) maps histories into classes by a decision tree.
•Random forest language model

P(w|h) =
1
M

M

∑
j=1

P(w|ΦDTj(h)), (8)

whereΦDTj(h) maps histories into classes by a randomized decision tree.

New Questions

•Questions we have asked:

Is the word wi−1 in the set of words {a, an, the}?

•Questions we would like to ask:

Does the prosodic break si−1 take its value in the set of values {1, 2, 3}?

Experiments

Data and setup:

•ToBI-labeled Switchboard data; 10k vocabulary

•Prosodic break classifier from CLSP Workshop’05 (Hale et al,2006)

• 666k words for training, 51k for development, 49k for evaluation

•Trigram with Modified Kneser-Ney smoothing; 100 trees per forest

Granularity

We believe a finer granularity than the ToBI scheme is needed for language model-
ing. 12-valued quantized posterior probabilityP(1|features) from the prosodic break
classifier was used.

Table 1: Granularity of Prosodic Breaks

Model two-level three-levelcont.-valued
KN.3gm 66.1 66.1 66.1
RF-100 65.5 65.4 56.2

Feature Selection

We built RFLMs forP(wi|wi−1,wi−2,si−1,si−2) then masked out one of the features
in order to see how much it contributed.

Table 2: Feature Selection by RFLM

History Perplexity
wi−1, wi−2, si−1, si−2 56.2

wi−1, wi−2, si−1 55.9
wi−1, wi−2, si−2 63.9

wi−1, wi−2 62.3

Main Perplexity Results

We compared the combinations of estimatingP(W,S) then computedP(W ) =

∑S P(W,S) using the forward algorithm.

Table 3: Main Perplexity Results

Model Method KN RF
P(W,S) tuple 3gm 358 306

decomp. 274 251
P(W ) tuple 3gm69.3 67.2

= ∑S P(W,S) decomp. 66.8 64.2
P(W ) word 3gm66.1 62.3

Conclusions

Random forests are a feasible means for adding prosody into language models.

•Finer grained prosodic break indices are needed.

•Prosodic breaks should be given to language models.
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