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Abstract

We propose a novel method of exploiting prosodic breaks in lan-
guage modeling for automatic speech recognition (ASR) based
on the random forest language model (RFLM), which is a col-
lection of randomized decision tree language models and can
potentially ask any questions about the history in order to pre-
dict the future. We demonstrate how questions about prosodic
breaks can be easily incorporated into the RFLM and present
two language models which treat prosodic breaks as observ-
able and hidden variables, respectively. Meanwhile, we show
empirically that a finer grained prosodic break is needed for
language modeling. Experimental results showed that given
prosodic breaks, we were able to reduce the LM perplexity by a
significant margin, suggesting a prosodicbest rescoring ap-
proach for ASR.

1. Introduction

Prosody refers to a wide range of suprasegmental properties
of spoken language units, including tone, intonation, rhythm,
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2. Prosodic Language Models
2.1. Granularity of Prosodic Breaks

The ToBI-labeled speech corpus [10] makes it possible to inves-
tigate the use of prosodic breaks in two aspects: automatic de-
tection/classification and statistical modeling. Although some
researchers argued against this intermediate phonological layer
[17], we believe that 1) supervised training of prosodic classi-
fiers can help us understand the usefulness of various proposed
prosodic features; 2) symbolic prosodic breaks are easier to fit
into the current:.-gram based language modeling approach than
continuous-valued prosodic features. As an example of the sec-
ond point, in direct modeling of prosodic features like the pause
length in [18], simple quantization like binning was used.

A decision tree classifier was built to predict three types of
breaks, namelyl, 4 andp, with an accuracy 083.12% in [3]
for parsing speech. In [19], theandp labels were further col-
lapsed into one. While this granularity of prosodic breaks has
been suitable for their tasks, we believe a finer granularity is
needed for language modeling. So we used the quantized pos-

stress and so on. It has been used for a number of spoken lan- terior probability P(1|feature$, which hasl2 possible values,
guage processing tasks, such as disfluency and sentence boundrom the decision tree classifier of [3] in our experiments. (See

ary detection [1], topic segmentation [2], spoken language pars-
ing [3], among others. We are mainly interested in using
prosody to improve automatic speech recognition (ASR). As
a separate knowledge source, prosody has been helpful in all
three major components of a modern ASR system: the acous-
tic model [4, 5], the pronunciation model [6] and the language
model [7, 8]. (For a comprehensive review of prosody models
in ASR, see [9].) New opportunities of using prosody emerged
after the availability of a prosodically labeled speech corpus
[10], where tones and breaks were hand-labeled with a subset of
ToBI labeling scheme [11]. In this work, we focus on prosodic
breaks.

The random forest language model (RFLM) [12] is a pow-
erful model which consistently outperforms thegram lan-
guage model in terms of both perplexity and word error rate
in several state-of-the-art ASR systems [13, 14]. Based on de-
cision trees, the RFLM has the potential of integrating informa-
tion from various sources besides the history words by simply
asking new questions, analogous to the maximum entropy lan-
guage model by using new features [15, 16]. We propose two

Section 4.2 for details.)

2.2. Language Models with Prosodic Breaks

LetW, S = wosowis1wass2 - - - wm Sm be a sequence of words
and prosodic breaks in their temporal order, whéve =
wowiws - - - Wy, iS the sentence of lengthm + 1) and S =
S08150 - - - Sm IS the sequence of prosodic breaks for the sen-
tencelV, wheres; denotes the break between andw; 1, for
allo <i <m.

First we would like to estimate the joint probability
P(W, S) as ann-gram LM of the(word, break-tuples:
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This joint model is immediately usable if our goal of ASR

prosodic language models based on the RFLM and demonstrate iS the simultaneous recognition of words and prosodic breaks

their performance in perplexity by contrasting them to a base-
line n-gram language model using the same information.

The rest of the paper is organized as follows: in Section 2
we present our proposed models. In Section 3, we briefly re-
view the RFLM. Experimental setup and results are presented
in Section 4. Discussion of future work appears in Section 5
and conclusions in Section 6.
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where A stands for the acoustic features and we approximate
P(A|W, S) with a usual acoustic modét(A|W) for the sake
of simplicity®.

If we stick to the original formulation of ASR, we can esti-
mate the language modg(17) as follows:

P(W) = > P(W,S)

= ZHP(U%)Si‘wzl:iﬂﬁz;lwrl)- 3)
S =0
This computation can be carried out efficiently by a simple for-
ward pass of the forward-backward algorithm [21].
For either (1) or (3), we need to compute the probabil-
ity P(w;,silw;_ 1,5, ,1). We propose the following two
methods:

e Lett; = (w;,s;), forall 0 < i < m. We have

(4)

Then we can build am-gram LM or RFLM of ¢;’s,
whose vocabulary is the Cartesian product of the word
vocabulary and the prosodic break vocabulary.

i—1 i—1 i—1
P(’ll)i, Silwzfnﬁ»h 57?777,4»1) = P(tz‘t;7n+1)

e Alternatively, we can decompose the probability as fol-
lows:
i—1 i—1
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Then we can build twa-gram LMs or RFLMs for pre-
dicting the word and the break, respectively.

In the second method, however, when a history consists of
both words and prosodic breaks, there isn’t a natural order of
backing off. Previous work either chose it heuristically (e.g.,
[22, 23]) or tried to find the optimal back-off path or combina-
tion of paths [24, 25]. We propose to handle this problem grace-
fully with the RFLM, which we will describe in the following
section.

3. Random Forest Language Models

A RFLM [12] is a collection of randomized decision tree lan-
guage models (DTLMs) [26], which define equivalence clas-
sification of histories. The RFLM generalizes the DTLM by
averaging multiple DTLMs, which, in turn, generalizes the
gram LM by having a sophisticated equivalence classification.
The LM probability of a RFLM is defined as follows:

1 M
27 2 Po (wlh)

1 M
= 3 > P(w|®pr; (h)),

Jj=1

PRF(w\h)

(6)

whereh is the history and pr; (-) is a decision tree. The ques-
tions that have been used so far care only about the identity of
the words in a history position. If; is the word we want to
predict, then the question takes the following form:

1Another way to justify this approximation is that in this paper,
we only consider breaks, among many other prosodic features, and
prosodic breaks have a relatively weak influence on the acoustics.

Is the wordw;_x, k > 1 in a set of wordsS?

Because in the normal-gram situation we know no more than
the words in the history, these questions are almost all we can
ask.

Now if we have more information about the history, we can
easily enlarge our inventory to include questions of the follow-
ing form:

Does the featurg about the history take its value
in a set of values?

As long as the feature values are categorical, we can use the
same decision tree building algorithm as before. This makes the
RFLM an ideal model framework for integrating information
from various sources. For example, if we are given the prosodic
breaks between words in the history, we can ask questions like:

Does the prosodic break_; take its value in the
set of valueg0.7,0.8,0.9}?

Note that from the decision tree’s point of viemy; . is just
another feature which happens to take its value in the vocabu-
lary. Only when it is informative for the prediction do we want
to ask questions about it. As numerous LMs, like tiigram
LM or the maximum entropy LM, have proven, the immediately
previous wordw;—1 is the single most important/informative
and the most easily obtainable feature, followed by, probably,
the previous of previous word; .

4. Experiments
4.1. Data and Setup

We used the ToBl-labeled Switchboard data from [10]. Fol-
lowing [3], we divided our data into training(5, 790 words),
development 1, 326 words) and evaluatior4, 494 words,
55,529 counting the end of sentence symbols). Due to the rela-
tively small size of the corpus, our LMs would only consider up
to two words and two breaks in the history, if not specified oth-
erwise. We builtl00 trees for each RFLM and the smoothing
method for both regulan-gram LMs and RFLMs was always
the modified Kneser-Ney [27]. The vocabulary size \i/ak.

4.2. Granularity of Prosodic Breaks

The decision tree classifier in [3] provided three degrees of
granularity: two-level (break or not), three-level (ToBI in-
dices 1, 4 and p) and continuous-valued (quantized into 12
values,0.0,0.1,...,1.0 and —1.0). We built three RFLMs
for P(w;|wi—1,w;—2, si—1, si—2), where the breaks;_, and
si—2 took values of different granularity. The baseline was the
word trigram LM, P(w;|w;—1,w;—2), with modified Kneser-
Ney smoothing.

Table 1:Granularity of Prosodic Breaks

[ Model [ two-level | three-level| cont.-valued|

KN.3gm 66.1 66.1 66.1
RF-100 65.5 65.4 56.2

From Table 1, we concluded that the ToBI indices were
not fine-grained enough for the purpose of language modeling.
Henceforth our experiments used the continuous-valued breaks.



4.3. Feature Selection by RFLM

As we mentioned before, from a RFLM’s point of view, the var-
ious variables in the historyy;’s or s;'s, are just features. The
model chooses any one of them simply because it has strong
correlation, or large mutual information, with the future word.
So by asking the RFLMot to use one of the variables in the
history, we can find out how valuable that feature is. This kind
of feature engineering was also used in maximum entropy LMs
[15, 16].

We built RFLMs for P(w;|w;—1, wi—2, $i—1, Si—2) then
masked out one of the features in order to see how much it con-
tributed.

Table 2:Feature Selection by RFLM

| History | Perplexity |
Wi—1, Wi—2, Si—1, Si—2 56.2
Wi—1, Wi—2, Si—1 55.9
Wi—1, Wi—2, §i—2 63.9
Wi—1, Wi—2 62.3

As we had expected, Table 2 showed that the break be-
tween the immediately previous word and the future weyrd;,
helped the prediction, while the break between the previous and
the previous of the previous;;_o, did not. Adding the lat-
ter actually hurt the perplexity a little bit, although that might
change if we had more data. Similar experiments can be done
for P(s;|wi, wi—1,wi—2,8i—1,8i—2). We skipped the detail
but the conclusion was that the most useful features for predict-
ing a break were its previous two words; andw;_1, which
was consistent with our intuition.

We also point out here that this kind of experiments would
not have been so easy to carry out in the case of reguar
gram LMs with modified Kneser-Ney smoothing. You have to
specify the back-off order and search the best value for some of
the discount parameters.

4.4. Main Perplexity Results

Having selected the features, we put the two components to-
gether following (5) to getP(wi, S¢|’wi71, W;—2,8i—1, 8172)

and called it the “decomp.” (decomposition) method in Ta-
ble 3. For comparison, we also followed (4) to get the same
quantity with a trigram LM of(word, break-tuples and called

it the “tuple 3gm” method in Table 3. For each method, we con-
trasted the modified Kneser-Ney-smoothedram LM (“KN”
column) with the RFLM (“RF” column).

Table 3:Main Perplexity Results

| Model | Method [ KN | RF |
P(W,S) tuple 3gm | 358 | 306
decomp. | 274 | 251
P(W) tuple 3gm | 69.3 | 67.2
=>sP(W,S) | decomp. | 66.8 | 64.2

| P(W) [ word3gm] 66.1] 62.3]

As shown in Table 3, the best perplexity resulted from
the decomposition method using the RFLM in both the model
P(W, S), where the prosodic breaks were given, and the model
P(W) =>4 P(W,S), where the prosodic breaks were hid-
den.

If we knew nothing about the prosodic breaks, we could
still build a trigram LM with the modified Kneser-Ney smooth-
ing or the RF. We called it the “word 3gm” method and put the
perplexity results in the last row of Table 3. We observed that al-
though our best number for the mode{W) = ", P(W, S)
was better than a modified Kneser-Ney-smoothed trigram LM,
it was outperformed by the basic RFLM, as shown in the bot-
tom right corner of Table 3. The reason was that in the model
P(W) =>4 P(W,S), we were trying to predict a prosodic
break from its proceeding words and breaks, which correlated
poorly with it, instead of from its corresponding acoustic fea-
tures.

Therefore we concluded that given prosodic breaks, we
could successfully reduce the LM perplexity by a significant
margin with the RFLM and the decomposition formula (5).

5. Discussion

Given that we could build a good LM when the prosodic breaks
were provided (Table 2) but could not when they were not (Ta-
ble 3 modelP(W) = >4 P(W,5)), itis clear that we should
get the prosodic breaks from the acoustics, instead of predict-
ing them from words. In fact, the prediction of prosodic breaks
from words was so bad that it killed the gain we had from using
them to improve the word prediction. Therefore we propose the
following procedure of using prosodic breaks in an ASR sys-
tem:

e Generate arV-best list of hypotheses from a standard
ASR system;

e For each hypothesis, align the words with the acoustics
using the Viterbi algorithm; find out the regions between
words and predict their prosodic breaks from the acoustic
features using a prosody classifier;

e Rescore the N-best list with
HiP(wi‘wz:rlL+175i:n+1)-

Note that the modd], P(w;|w;~}, ,si_,.,) is nota “pure”

LM anymore since the;’s come from the acoustics. However,
because the acoustic features used to predict the breaks are dif-
ferent from those used to predict the words, we expect the new
information would help choose a better hypothesis through the
prosodically-informed LM.

the model

6. Conclusions

We have presented our method that uses the RFLM to build
LMs strengthened by prosodic break information. We showed
that the ToBlI break indices were not fine-grained enough for
the task of language modeling. Using quantized posterior prob-
abilities from a decision tree classifier as fine-grained prosodic
breaks, we could reduce the perplexity by a significant margin.
We also demonstrated that the RFLM was an ideal framework
for incorporating various information like prosodic breaks into
the existing LM in a principled way.
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