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ABSTRACT

While large language models excel in a variety of natural language
processing (NLP) tasks, to perform well on spoken language un-
derstanding (SLU) tasks, they must either rely on off-the-shelf au-
tomatic speech recognition (ASR) systems for transcription, or be
equipped with an in-built speech modality. This work focuses on
the former scenario, where LLM’s accuracy on SLU tasks is con-
strained by the accuracy of a fixed ASR system on the spoken input.
Specifically, we tackle speech-intent classification task, where a high
word-error-rate can limit the LLM’s ability to understand the spoken
intent. Instead of chasing a high accuracy by designing complex
or specialized architectures regardless of deployment costs, we seek
to answer how far we can go without substantially changing the un-
derlying ASR and LLM, which can potentially be shared by multiple
unrelated tasks. To this end, we propose prompting the LLM with an
n-best list of ASR hypotheses instead of only the error-prone 1-best
hypothesis. We explore prompt-engineering to explain the concept
of n-best lists to the LLM; followed by the finetuning of Low-Rank
Adapters [1] on the downstream tasks. Our approach using n-best
lists proves to be effective on a device-directed speech detection task
as well as on a keyword spotting task, where systems using n-best
list prompts outperform those using 1-best ASR hypothesis; thus
paving the way for an efficient method to exploit ASR uncertainty
via LLMs for speech-based applications.

Index Terms— large language models, prompting, LoRA fine-
tuning, speech recognition, intent detection, keyword spotting

1. INTRODUCTION
Large language models have recently revolutionized the field of NLP
by showing excellent performance on a diverse set of downstream
text-processing tasks often with little to no finetuning required on
the downstream tasks [2, 3, 4, 5, 6]. When trained with a large
number of parameters in the order of billions (and even trillions [7])
and similarly large quantities of text data, these models demonstrate
an emergent ability to do in-context learning [8, 9] and reasoning
via chain-of-thought prompting [10], which renders LLMs more
accurate than dedicated smaller models trained on task-specific data.

While this out-of-the-box generalizability and robustness of
LLMs have instantly made them a popular tool for text-based ap-
plications [11, 12], their usage for traditional speech-based appli-
cations is still an ongoing topic of research. One set of approaches
relies on multi-modal LLMs, which ingest the audio modality by
processing the underlying speech using an encoder network and
feeding the LLM with speech embeddings [13, 14, 15, 16]. How-
ever, such architectures are mainly motivated towards the goal of
having a single end-to-end model and the speech recognition capa-
bilities of such multi-modal LLMs are limited [13]. Another set of
approaches interface LLMs with pretrained ASR models such that
the ASR output is fed directly to the LLM as a prompt to tackle the
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Fig. 1: A toy NLP task which demonstrates that prompting the LLM with
n-best ASR hypotheses allows it to exploit ASR uncertainty to better solve
the downstream NLP task.

downstream task [17, 18, 19]. The benefit of this modular approach
is that one can choose any desirable in-domain ASR model and any
LLM of appropriate size and configuration. In this work, we focus
on such modular ASR+LLM architecture to approach the speech
intent classification task and address the problem of incorrect ASR
outputs affecting the ability of LLMs to determine the correct un-
derlying intent. An important consideration regarding LLM-based
solutions, that has not received enough attention in the literature,
is the high cost of deploying them, either server-side or on-device.
We argue that to viably deploy LLMs into production, multiple
tasks need to utilize one underlying LLM, effectively sharing the
cost. Therefore, it is crucial to seek out ways of using LLMs in a
non-intrusive, shareable way. This consideration has informed the
scope of our exploration. For example, off-the-shelf frozen ASR
systems and LLMs are preferred over complex specialized models;
prompting, if effective, is preferred over finetuning; and finally,
LoRA finetuning is favored over full finetuning of LLMs.

While ASR models aim to transcribe speech to text accurately,
speech recognition on real-world speech is often inaccurate and
WERs are typically non-zero due to challenging conditions like
noisy speech, environmental noise, accents, acoustic and speaker
variations [20]. For any downstream SLU task, the 1-best ASR hy-
pothesis acts as an information bottleneck between the ASR and the
LLM component, as shown in Figure 1. In this work, we propose to
widen this information bottleneck by exposing the LLM to an n-best
list of ASR hypotheses. Our hypothesis is that using n-best lists in-
stead of 1-best enables the LLM to benefit from the uncertainties in
ASR prediction instead of being adversely affected by them. n-best
lists also conform to our goal of making minimal changes to an LLM
as they are a prompting-friendly format to convey ASR uncertainty
to the LLM as discussed in Section 2.3. Using descriptive prompts
which explain the concept of n-best lists to an LLM, or by finetun-
ing the LLM with n-best lists as the prompt, we demonstrate that
an LLM can interface with a frozen ASR model in a more effective
way as compared to using just the 1-best ASR output directly. A
relevant recent work [19] utilizes ASR 1-best outputs as well as
oracle transcripts as prompts to the LLM for speech-intent classifi-
cation with encouraging results. Our work differs in multiple ways:



Prefix Infix Suffix

1-best: “Determine whether the following spoken utterance is directed towards
a voice assistant or a human being.” “Typical spoken

utterances directed
towards the voice
assistant are
commands to fulfill a
task or queries to get
some information.”

binary-target: “Answer only from the following categories
[‘1’, ‘0’] where ‘1’ indicates that the utterance is directed to-
wards the voice assistant and ‘0’ indicates that the utterance is
directed towards a human being.”

n-best: “In this task, we provide an n-best list of ASR hypotheses for a spoken
utterance. Each of the hypothesis is separated by a newline character. The cost
of each hypothesis is at the end in the format ‘[cost]’ where a low cost indicates
that we are more confident about that ASR hypothesis. Determine whether the
following spoken utterance is directed towards a voice assistant or a human
being by taking into account all the n-best hypotheses.”

0-100 scale: “Answer on a scale of 0 to 100 where a score of
‘100’ indicates that the utterance is directed towards the voice
assistant and ‘0’ indicates that the utterance is directed towards
a human being. Your answer should only contain an integer
between 0 and 100.”

Table 1: Task-prompts used for device-directed speech detection task.

(i) we explore prompting with n-best lists with n = 1 being the
trivial case, (ii) our n-best lists are augmented with ASR hypothesis
costs as an additional source of information on uncertainty in ASR,
and (iii) apart from direct prompting, we also explore finetuning of
LoRA adapters using a training data of n-best list prompts. We use
an in-house general-purpose English ASR system and Vicuna [21],
an instruction-tuned LLaMA LLM [22] , in this paper, and we ex-
periment on (i) a device-directed speech detection (DDSD) task
for binary intent classification on whether an utterance is directed
towards a voice assistant or not, and on (ii) a keyword spotting (KS)
task on the Google Speech Commands (GSC) [23] dataset, which
we treat as a multi-class intent classification problem. While the
labels for the binary classification DDSD task are typically 1 (di-
rected) and 0 (undirected), we also explore the LLM’s capability to
output its decision on a scale of 0 and 100 so that the output score
can be converted to a probability and used for generating smooth
ROC curves. We show improved accuracy using n-best lists on both
GSC and DDSD tasks.

The rest of the paper is structured as follows: Section 2 explains
our methodology. Section 3 provides experimental details and anal-
ysis. Section 5 summarizes the conclusions.

2. OUR APPROACH

In this section, we explain details of the SLU tasks and design of our
inputs to the LLM.

2.1. Tasks and Datasets
Device-directed Speech Detection (DDSD): In this task, the goal is
to identify whether a spoken utterance is directed towards a device
(e.g. smartphone) or a human. We use an internal dataset which
contains a train and an eval partition with a label of 1 for device-
directed speech and a label of 0 for human-directed speech. The
train partition contains weakly-labeled data as explained in [24]
and comprises ∼107k utterances for each class. The eval partition
contains human-graded data with 12,771 device-directed and 2,274
human-directed utterances. We use our ASR+LLM intent classifi-
cation system to predict the binary target labels on the eval set. In
another set of experiments, we generate probabilistic scores on the
train partition using a LatticeRNN model [25] in range of [0, 1].
The floating point probability scores are then converted to an integer
range [0, 100] by multiplying with 100 and rounding to the nearest
integer. During LoRA finetuning, we train the LLM to output either
the binary labels for the input utterance or a score in the scale of 0
to 100. In the latter case, the score between 0 and 100 is divided by
100 to get a pseudo-probability value*.

Keyword Spotting: The GSC dataset consists of 35 keywords

*Another way to obtain probabilistic DDSD scores is to look at the Soft-
max probability of the tokens ‘1’/‘0’ in the LLM output layer. However, we
choose to explore limits of interacting with LLM via prompting and text-
generation only.

where 10 keywords “Yes”, “No”, “Up”, “Down”, “Left”, “Right”,
“On”, “Off”, “Stop”, and “Go” are considered in-domain com-
mands and the remaining words are considered out-of-vocabulary
(OOV). Given an audio of 1 second duration, the task is to iden-
tify which command keyword, if any, was spoken in the utterance.
State-of-the-art approaches [26, 27, 28, 29] typically use a dis-
criminative classifier trained to identify the keywords-of-interest
and achieve ∼98.5% accuracy on this task. In this paper, we use a
general-purpose large-vocabulary ASR system in conjunction with
an LLM to identify the command keywords. Our goal remains to
modify existing ASR and LLM solutions minimally, and we seek to
explore the possibilities of what an LLM can do with uncertain out-
puts from an ASR system which is not trained discriminatively on
this limited vocabulary KS task. The LLM in this case is expected
to rectify the ASR output and map it to the correct keyword. We
use the test partition (∼11k utterances) of this dataset for evaluating
our ASR+LLM approach and the train partition (∼85k utterances)
for LoRA finetuning of the LLM. More details of this dataset are
available in [23].

utterance-prompt GSC DDSD
1-best “hive” “shuffle play U2”

n-best

“hive [-47.8]
five [-46.8]
bye [-44.0]

hive [-31.5]”

“shuffle play U2 [-84.4]
shuffle play Kito [-83.1]
shuffle play Buku [-82.9]
shuffle play Kitu [-82.8]”

Ground-truth “five” “shuffle play U2”

Table 2: Examples of 1-best vs. n-best lists utterance-prompts.

2.2. ASR Outputs as n-best Lists
ASR systems typically output a lattice graph comprising compet-
ing ASR hypotheses under a beam-search decoder [30]. The least
cost path in the lattice is the 1-best hypothesis. While the full lattice
may contain more paths than the n-best list and it is a richer for-
mat for capturing ASR uncertainty, we found that expressing lattices
as prompts for LLM is not trivial because they are a complex data-
structure whose textual representation is very long, often exceed-
ing the maximum sequence length of 2048 tokens allowed for our
base LLM model. Therefore, we choose n-best lists as the medium
to inform the LLM of uncertainty in the ASR decoding process.
An n-best list of competing ASR hypotheses can be obtained by
picking the n least cost paths in the lattice. We use a prompting-
friendly format for the n-best lists where the hypotheses are sepa-
rated with newline characters and each hypothesis is appended with
a hypothesis-cost at the end in the format [cost]. This cost is the sum
of the acoustic-model and language-model costs on the arcs along
the lattice-path corresponding to the hypothesis [31] and a low cost
indicates a high posterior probability assigned by the ASR system for
that hypothesis given the speech input. We obtain such n-best lists
for both DDSD and GSC datasets. The 1-best ASR hypothesis and
the n-best lists are utterance-specific and we call them the utterance-
prompt. Table 2 shows examples of such utterance-prompts.



Binary Target 100-Scale Task
n Base Model Finetuned *FT no-TP *FT no-HC Base Model Finetuned *FT no-TP *FT GibTP *FT no-HC

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ FPR95 ↓ EER ↓ FPR95 ↓ EER ↓ FPR95 ↓ EER ↓ FPR95 ↓ EER ↓ FPR95 ↓ EER ↓
1 91.5 30.0 90.5 8.3 90.3 8.6 90.5 8.3 84.7 32.0 55.8 10.7 54.0 9.9 54.5 10.3 53.6 10.7
2 85.1 32.7 91.3 5.2 91.3 5.8 91.2 5.6 90.3 55.2 27.7 8.2 25.9 8.2 27.3 8.2 38.5 8.9
4 87.2 46.4 91.8 5.2 91.8 5.2 91.5 5.2 85.8 46.0 13.0 7.6 12.0 7.5 12.2 7.5 21.1 7.7
8 85.9 43.0 91.8 4.7 91.9 5.3 91.4 4.9 81.9 36.3 11.0 7.5 11.4 7.2 11.0 7.3 12.3 7.3
16 85.0 42.0 92.0 4.9 91.8 5.3 91.7 5.1 84.7 36.7 10.1 7.4 10.9 7.0 10.6 7.2 10.5 7.0

Table 3: Comparing accuracy of various ASR+LLM model setups on DDSD task with binary targets as outputs vs. output on a scale of 0-100 for different
values of n-best list size. All numbers are in percentage. FPR95 refers to FPR of 100-Scale system at TPR=95%. * refers to ablation studies on finetuning
(FT) without task-prompt (no-TP), without hypothesis-cost (no-HC) or with gibberish task-prompts (GibTP) as compared to the “Finetuned” system.

2.3. Designing Prompts for Processing n-best Lists
We use the prompting-without-finetuning approach only for the
DDSD task. Prompts that describe the DDSD task to the LLM are
presented in Table 1. We call these fixed prompts the task-prompt.
Each task-prompt is composed of a prefix, an infix, and a suffix to
cover variations such as 1-best vs. n-best input and binary scoring
vs. scoring on a scale of 0-100. The task-prompt is further con-
catenated with the DDSD utterance-prompts illustrated in Table 2.
For the KS task, we only rely on the finetuning approach as a pure
prompting-without-finetuning approach could not beat our baseline
KS system described in Section 3.3.

3. EXPERIMENTS

In this section, we provide details of models, training, experiments
and subsequent analysis.

3.1. ASR System
Our ASR model is based on an E2E-ASR architecture with same
hyperparameter setting as presented in [32]. The same model is
used for both DDSD and GSC task. The model comprises a
Conformer [33] encoder with a CTC and an attention-based de-
coder. Beam-search decodings from the attention-based decoder are
rescored using an external finite state transducer (FST) based lan-
guage model. We use the ASR lattices obtained from the FST-LM
decoding to generate the 1-best and the n-best ASR hypotheses.
This model is trained for 100 epochs on ∼18k hours of speech data.
For experiments in this work, the ASR model is considered frozen
and is used only for generating the ASR outputs.

3.2. LLM Base Model and Finetuning
We use a pretrained instruction-tuned LLM, Vicuna-7B-v1.3 [21], as
the base model for our experiments. Inference on this model is done
using 4 NVIDIA A100 GPUs. For finetuning, we train parameters of
LoRA adapters [1] for 3 epochs using 8 GPUs with a learning rate of
2e-5 which we warmup to over 3% of the learning steps. The LoRA
adapters (rank=8) have 4.1M parameters which is 0.06% of the 7B
parameters of the base model. We use FastChat toolkit [34] for in-
ference and finetuning with DeepSpeed GPU optimization [35]. All
inferences are deterministic with a temperature of 0. Finetuning is
done using train partitions of GSC and DDSD datasets.

3.3. Baseline Systems
For the DDSD task, we use the LatticeRNN model [36] as our base-
line. LatticeRNN is a strong baseline system as it processes the
whole ASR decoding lattice whereas n-best list used in proposed
ASR+LLM approach is a condensed prompting-friendly feature de-
rived from the lattice. We also use the LatticeRNN to “teach” the
ASR+LLM system to output its decision on a scale of 0 to 100 and
LatticeRNN could also be seen as a teacher model under the student-
teacher knowledge-transfer paradigm. For the KS task, we devise a
trivial baseline which claims that a keyword was detected if the ASR
outputs that keyword as the 1-best hypothesis. If the ASR 1-best
hypothesis does not match one of the 10 command keywords, we
classify the utterance as OOV. We expect our ASR+LLM approach

to improve upon this trivial baseline by rectifying the ASR predic-
tions using the information in the n-best list prompts.

4. RESULTS AND ANALYSIS

In this section, we provide experimental results and subsequent anal-
ysis using ablation studies.

4.1. Output Generations from Base Model vs. Finetuned Model
We aim to exploit the emergent ability of the LLM to understand the
task based on the provided prompt and output an appropriate answer.
Towards this end, we prompt the ASR+LLM system directly with
the task-prompt plus the utterance prompt without any finetuning.
We observed that LLM can indeed perform the intent detection task
out-of-the-box, but sometimes it may output a descriptive answer in
natural language as opposed to a binary 0/1 output as desired for
the DDSD task. While this behaviour demonstrates the emergent
ability of the base LLM model, we consider it undesirable in this
work because descriptive answers are not suitable for scoring the
model accuracy easily. For example, we obtain the following outputs
from the Vicuna-7B-v1.3 model with and without finetuning:

DDSD Prompt: Task-prompt (n-best Prefix + Infix + binary-target
Suffix) + “score of the Hawaii game [-144.2] \n what’s the score
of the Hawaii game [-135.1]”
LLM without Finetuning: “Based on the provided n-best list,
the most likely hypothesis for the spoken utterance is: ‘score of
the Hawaii game [-144.2]’. This hypothesis is the first in the list,
indicating that it is the most likely interpretation of the spoken ut-
terance. The cost associated with this hypothesis is ‘-144.2’, which
suggests that the ASR system is not very confident about this hy-
pothesis. Given the content of the utterance, it is more likely to be
directed towards a voice assistant rather than a human being. The
utterance contains a question about the Hawaii game, which is a
sports-related topic that is commonly addressed to voice assistants.
Therefore, the answer is ‘1’.”
LLM with Finetuning: “1”

As a convention, if the LLM outputs a descriptive answer in the
DDSD task, we consider the underlying utterance to be classified as
device-directed. We found the LLM to output descriptive answers
only for ∼6% of the utterances when it was prompted without fine-
tuning. With finetuning, the LLM outputs only the desired values
and no descriptive answers.

4.2. Intent Classification on DDSD Dataset
Table 3 shows the results of DDSD experiments. When we prompt or
finetune the LLM to output a binary decision (‘0’ or ‘1’) for DDSD
utterance prompts, the output of ASR+LLM system provides a fixed
True Positive Rate (TPR) and False Positive Rate (FPR), and the
system is not tunable. Directly prompting the base model with task-
prompts in Table 1 depicts the LLM’s internal knowledge and emer-
gent ability to tackle the DDSD task. We found that the base model
understands the task best when it is prompted with 1-best lists. It
correctly rejects 70.0% of the false positives at a high TPR of 91.5%.
As the size of the n-best list is increased, the model does not achieve



System yes no up down left right on off stop go OOV Total Acc.
Baseline 98.6/98.1 83.4/98.3 99.6/55.1 100.0/87.2 100.0/88.3 100.0/87.1 100.0/78.5 99.5/90.3 99.0/98.8 99.7/81.3 93.0/99.3 94.5
FT n=1 98.3/98.6 94.4/95.6 97.8/84.5 99.5/89.4 99.8/95.2 99.7/97.5 98.2/82.3 96.4/93.3 99.0/99.0 97.9/91.3 96.4/99.5 97.0
FT n=8 99.3/99.0 94.1/98.0 97.8/85.7 99.5/92.1 99.0/95.2 99.7/98.2 98.5/83.8 97.7/93.5 99.3/98.8 99.0/94.8 96.9/99.5 97.5

Table 4: Precision/Recall of various ASR+LLM models on keyword spotting task on GSC dataset for each keyword. All values are in percentage. Last column shows total accuracy.

as high TPR and as low FPR as the n=1 case, thus, suggesting that
the base model is not acquainted with the concept of n-best lists from
its original training and it is not able to exploit the ASR uncertainty
as we desire. When we LoRA finetune the base model to output
binary targets, the accuracy on DDSD task improves considerably
with TPR being consistently greater than 90% for all values of n in
the n-best list. The system with 1-best ASR hypothesis has an FPR
of only 8.6% whereas with an 8-best list, it reduces to 4.7% depict-
ing that the ASR+LLM can correctly reject 95.3% human-directed
utterances while correctly predicting 91.8% of the device-directed
utterances. While we observe diminishing gains as we increase the
size of n-best list, these observations provide strong evidence that
LLMs can effectively use n-best lists for DDSD task.

Next, we prompt and finetune the LLM to output scores on a
scale of 0-100. In this 100-Scale task, the LLM outputs can actu-
ally be converted to a pseudo-probability by dividing the text output
by 100. Therefore, this system is tunable and we evaluate it using
Equal Error Rates (EER) and an arbitrarily chosen operating point
of high TPR=95%. Without finetuning, we consider this a very chal-
lenging task for the base model as the LLM is essentially expected
to deduce a probability of an utterance being device-directed with
a precision of 2-decimal places. As expected, the base model per-
forms very poorly on this task for all values of n. When we LoRA
finetune the base model for this task, the LLM accuracy improves
substantially as shown in Table 3. For 1-best ASR hypothesis, the
EER improves from 32.0% to 10.7% and it improves to an EER of
7.4% with n=16. As these systems are tunable, we evaluate them
at TPR=95%, a high TPR which is unachievable using the system
which outputs binary targets only. The FPR decreases from 53.6%
for n=1 to 10.5% for n=16, a relative reduction of 80%. Figure 2
shows the ROC curves for the finetuned LLMs on the 100-scale task.
n=16 system is the best performing system; and the area-under-the-
curve consistently increases as n is increased. In comparison to our
ASR+LLM approach, the LatticeRNN baseline has an EER of 6.4%
and FPR=8.2% at TPR=95% which represents an upper bound of
accuracy as LatticeRNN processes the full ASR lattice.

Ablation Study on Prompts: We ablated the utterance-prompts
and task-prompts to determine their importance in solving the DDSD
task. When hypothesis-costs are removed from the n-best lists, we
found that the prompting-based approach on the base LLM model
completely breaks down, and we couldn’t engineer any effective
task-prompt that achieves a reasonable accuracy on the DDSD task.
However, when the LLM is LoRA finetuned, we found that neither
the removal of the hypothesis-cost nor that of the task-prompts has
significant impact on the model accuracies as shown in Table 3. Fur-
thermore, we also LoRA finetuned the LLM using a gibberish task-
prompt composed of non-English words and obtained fairly simi-
lar accuracy as the original prompt. The ablation studies show that
only the utterance-prompts (without hypothesis costs) are required
for LoRA finetuning.

4.3. Keyword Spotting on GSC Dataset
Table 4 shows the results for the KS task on the GSC dataset for the
trivial ASR-based baseline and the ASR+LLM approach where the
LLM is LoRA finetuned with prompting using only the best ASR
hypothesis (n=1) versus prompting with n-best list with n=8. The

Fig. 2: ROC curves for LLMs finetuned to output score on a scale of 0-100.

ASR baseline has an overall accuracy of 94.5% with low-recall for
certain commands e.g. “on” and “up”. When we feed the 1-best
ASR hypothesis to the LLM and finetune for the KS task, the overall
accuracy improves to 97.0%. Examples of some corrections made by
the LLM are “app”→“up”, “Lyft”→“left”, and “call”→“go”; and
such corrections are learned by the LLM from the training dataset
during finetuning. The LLM learns the common mistakes made by
the ASR in the 1-best hypothesis and rectifies them. When we LoRA
finetune the LLM with n-best list of size 8, the overall accuracy
increases to 97.5%. This improvement stems for the fact that n-best
lists often contain the ground-truth keyword as one of the alternate
hypothesis e.g. “out [-42.7] \n app [-42.6]\n OK [-41.3] \n home
[-40.9] \n oh [-40.1] \n no [-39.7] \n hello [-38.0] \n up [-37.8]” is
correctly classified as the keyword “up” for an utterance with “up”
as the ground-truth. In this example, while the correct command
“up” is 7th in the n-best list, the LLM is able to extract it based on
the various alternate hypotheses.

5. CONCLUSIONS

In this work, we explore prompting large language models with n-
best ASR hypotheses to tackle downstream tasks like spoken intent
classification and keyword spotting. We hypothesize that LLMs can
better exploit the uncertainty in ASR by processing n-best lists in-
stead of the 1-best ASR outputs which are highly prone to errors.
Our experiments show moderate success on the intent classification
task when the base LLM model is directly prompted with descriptive
task-prompts, with no clean advantage of using n-best lists. How-
ever, we demonstrate significant improvements on both the tasks us-
ing n-best lists with LoRA finetuning and confirm our initial hypoth-
esis that LLMs can indeed leverage rich ASR information. Specif-
ically, on the intent classification task, we design a tunable system
which outputs its decision on a scale of 0 to 100 enabling us to tune
for any desired operating point. In future, the proposed approach
can be generalized to more complex SLU tasks like domain predic-
tion and intent classification for multi-turn dialogues.

6. ACKNOWLEDGEMENTS

We thank John Bridle, Shruti Palaskar, and Barry Theobald for their feedback
on the paper.



7. REFERENCES

[1] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-rank adaptation of large language models,”
in International Conference on Learning Representations, 2022.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 1877–1901, Curran Associates, Inc., 2020.

[3] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language
models to follow instructions with human feedback,” Advances in Neu-
ral Information Processing Systems, vol. 35, pp. 27730–27744, 2022.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al.,
“Evaluating large language models trained on code,” arXiv preprint
arXiv:2107.03374, 2021.

[5] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung, et al., “A multitask, multilingual, multimodal
evaluation of ChatGPT on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[6] C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, and D. Yang, “Is
ChatGPT a general-purpose natural language processing task solver?,”
2023, arXiv:2302.06476.

[7] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.

[8] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, “An explanation
of in-context learning as implicit Bayesian inference,” arXiv preprint
arXiv:2111.02080, 2021.

[9] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer, “Rethinking the role of demonstrations: What makes
in-context learning work?,” 2022, arXiv:2202.12837.

[10] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” 2023, arXiv:2201.11903.

[11] OpenAI, “ChatGPT: Conversational AI powered by GPT-3.5,” 2023.

[12] Google AI, “Google Bard,” 2023.

[13] Y. Gong, H. Luo, A. H. Liu, L. Karlinsky, and J. Glass, “Listen, think,
and understand,” 2023, arXiv:2305.10790.

[14] Y. Fathullah, C. Wu, E. Lakomkin, J. Jia, Y. Shangguan, K. Li, J. Guo,
W. Xiong, J. Mahadeokar, O. Kalinli, C. Fuegen, and M. Seltzer,
“Prompting large language models with speech recognition abilities,”
2023, arXiv:2307.11795.

[15] D. Zhang, S. Li, X. Zhang, J. Zhan, P. Wang, Y. Zhou, and X. Qiu,
“SpeechGPT: Empowering large language models with intrinsic cross-
modal conversational abilities,” 2023, arXiv:2305.11000.

[16] S. Deshmukh, B. Elizalde, R. Singh, and H. Wang, “Pengi: An audio
language model for audio tasks,” 2023, arXiv:2305.11834.

[17] R. Huang, M. Li, D. Yang, J. Shi, X. Chang, Z. Ye, Y. Wu, Z. Hong,
J. Huang, J. Liu, Y. Ren, Z. Zhao, and S. Watanabe, “AudioGPT: Un-
derstanding and generating speech, music, sound, and talking head,”
2023, arXiv:2304.12995.

[18] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “HuggingGPT:
Solving AI Tasks with ChatGPT and its Friends in Hugging Face,”
2023, arXiv:2303.17580.

[19] M. He and P. N. Garner, “Can ChatGPT detect intent? evaluat-
ing large language models for spoken language understanding,” 2023,
arXiv:2305.13512.

[20] D. Yu and L. Deng, Automatic speech recognition, vol. 1. Springer,
2016.

[21] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng,
S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing, “Vi-
cuna: An open-source chatbot impressing GPT-4 with 90%* ChatGPT
quality,” March 2023.

[22] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient foun-
dation language models,” 2023, arXiv:2302.13971.

[23] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” 2018, arXiv:1804.03209.

[24] V. Garg, O. Rudovic, P. Dighe, A. H. Abdelaziz, E. Marchi, S. Adya,
C. Dhir, and A. Tewfik, “Device-directed speech detection: Regular-
ization via distillation for weakly-supervised models,” in Interspeech,
2022.

[25] F. Ladhak, A. Gandhe, M. Dreyer, L. Mathias, A. Rastrow, and
B. Hoffmeister, “Lattice RNN: Recurrent neural networks over lat-
tices,” in Interspeech 2016, 2016.

[26] B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted residual learning
for efficient keyword spotting,” in Interspeech, 2021.

[27] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword transformer: A self-
attention model for keyword spotting,” in Interspeech 2021, pp. 4249–
4253, ISCA, 2021.

[28] R. Vygon and N. Mikhaylovskiy, “Learning efficient representations
for keyword spotting with triplet loss,” in Speech and Computer:
23rd International Conference, SPECOM 2021, St. Petersburg, Rus-
sia, September 27–30, 2021, Proceedings 23, pp. 773–785, Springer,
2021.

[29] D. Seo, H.-S. Oh, and Y. Jung, “Wav2kws: Transfer learning from
speech representations for keyword spotting,” IEEE Access, vol. 9,
pp. 80682–80691, 2021.

[30] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech & Language, vol. 16, no. 1,
pp. 69–88, 2002.

[31] D. Povey, M. Hannemann, G. Boulianne, L. Burget, A. Ghoshal,
M. Janda, M. Karafiát, S. Kombrink, P. Motlı́ček, Y. Qian, K. Ried-
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