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Abstract
Although NeuroCRF, an augmented Conditional Random
Fields (CRF) model whose feature function is parameterized
as a Feed-Forward Neural Network (FF NN) on word embed-
dings, has soundly outperformed traditional linear-chain CRF
on many sequence labeling tasks, it is held back by the fact that
FF NN has a fixed input length therefore cannot take advantage
of the full input sentence. We propose to address this issue by
replacing the FF NN with a Long Short-Term Memory (LSTM)
NN, which can summarize an input of arbitrary length into a
fixed dimension representation. The resulting model obtains
F1=89.28 on WikiNER dataset, a significant improvement over
the NeuroCRF baseline’s F1=87.58, which is already a highly
competitive result.
Index Terms: neural networks, spoken language understand-
ing, conditional random fields, LSTM

1. Introduction
Neural networks are a powerful tools for natural language pro-
cessing. They can be used to perform features analysis for con-
ditional random fields, removing the need for extensive feature
engineering, and improving performance on a variety of tasks.
In particular, recurrent networks are well suited for language
modelling. They can be used to model long term dependen-
cies between words while avoiding the difficulties of n-grams
language models. This support for long term dependencies be-
tween variables is not without cost. Variables are always con-
sidered to be dependent, even if they are not. Long short-term
memory (LSTM) units were developed to address this issue.

LSTM layers update an internal memory based on the cur-
rent input, the previous value of the internal memory and the
previous output. This update include the possibility of discard-
ing the internal memory as needed. In effect, LSTM layers dy-
namically control the dependencies between variables. When
operating as a feature analysis component, LSTM layers have
a variable window size. When operating as a continuous state
machines, they have a variable Markov order.

Those properties are useful for the feature analysis of a
NeuroCRF applied to information extraction. In this case, the
NeuroCRF is used to segment an input sequence and classify the
segments. Obviously, the model should see the entire segment
when classifying it. Without some form of recurrence, this is
only possible by choosing a very large input window size. The
LSTM layers’ capacity to forget as needed allows the model
to change the window size dynamically during feature analysis.
This enables the model to support both long and short segments.

In this paper, we compare two new NeuroCRF models to
full rank feed-forward neural network (FF NN) based Neuro-
CRF. The first new model is a RNN-based full rank NeuroCRF,
and use a conventional recurrent NN. The second new model

is a LSTM-based full rank NeuroCRF. Models were trained and
tested on a large corpus extracted from Wikipedia and automati-
cally labelled. This large amount of data allows us to train mod-
els with more parameters. It also reduces the performance vari-
ation caused by the model initializations, facilitating the com-
parison of two configurations.

Section 2 presents some existing work in this area. Sec-
tion 3 summarizes NeuroCRFs. Section 4 describes RNN-based
NeuroCRFs. Section 5 presents the new LSTM-based Neuro-
CRFs. Finally, Section 6 shows the results of an experimental
study comparing those models.

2. Background
The idea of using LSTM units for NER is not new and can be
traced back to [1]. This initial attempt was quite different from
more recent approaches, especially in the output layer.

R-CRF [2], similar to RNN-based low-rank NeuroCRFs,
achieved good performance on ATIS [3]. LSTM units without
CRF layer [4] also achieved good performance on ATIS. Fi-
nally, [5] presented a study of the impact of various recurrent
network architectures. Those experiments showed improve-
ments when using a bidirectional recurrent layer. Our work is
similar to [6], which was uploaded to arXiv during the writing
of this paper. Like [6], we build on those existing approaches by
combining a CRF layer with a bidirectional LSTM layer. Unlike
[6] and [2], we used a full rank CRF layer [7]. We also used dif-
ferent input features, and word representations, and analyzed in
more details the impact of context when a bidirectional LSTM
layer is used.

3. NeuroCRF
Conditional random fields (CRFs) are a class of graphical mod-
els defining a conditional distribution p(y|x) of an output se-
quence y given an input sequence x [8]. The graph factorizes
the distribution into sets of simpler factor functions. Linear
chain CRFs, in particular, factorize a distribution into time. The
factor functions, in this case, are of the form Ψ(yt, yt−1,xt),
where xt is the relevant part of the input x around time t.

log p(y|x) =

(
T∑

t=1

Ψ(yt, yt−1,xt)

)
− logZ(x) (1)

Z(x) =
∑
y

exp

(
T∑

t=1

Ψ(yt, yt−1,xt)

)
, (2)

The factor function is a weighted sum of features extracted from
x, yt and yt−1, where the weights are the model’s parameters.
The set of features is created manually, by an human expert, a
process known as “feature engineering”.



NeuroCRFs use a NN to learn relevant feature automati-
cally, ideally removing the need for feature engineering. The
experimental results presented in Section 6 were obtained using
full rank NeuroCRFs [7], where the factor functions are:

Ψ(yt, yt−1,xt) = Gt(xt)F (yt−1, yt) (3)

F (yt−1, yt) =

 f0(yt−1, yt)
...
fN2−1(yt−1, yt)

 (4)

fi(yt−1, yt) =

{
1, i = Nyt−1 + yt
0, i 6= Nyt−1 + yt

. (5)

where x and y are a pair of input and output sequences of length
T , Gt(xt) is the neural network outputs vector obtained from
a subset of x centred at time t, and F (yt−1, yt) is an indicator
matrix, which pick outputs from Gt(xt). N is the number of
possible labels in y.

Equation 3 factorize the factor function into two compo-
nents, Gt and F . The NN output at time t is Gt(xt). With
N labels, Gt is vector with N2 elements, one per transitions.
Conceptually Gt is a N -by-N transition matrix, reshaped into a
vector. F (yt, yt−1) is used to select the NN output correspond-
ing to a transition from yt−1 to yt. It is a one-hot vector with
N2 elements; F could be replaced by indexing in Gt. The NN’s
input, xt, is a sliding window, centred around the t’th word.

3.1. Rank

A NeuroCRF’s rank [7] is the rank of its reshaped NN output.
The NN output of full rank NeuroCRFs, presented above, is a
N -by-N transition matrix whose rank is N . The NN output of
low rank NeuroCRFs is one. Full rank NeuroCRFs use their
NN to model transitions. Its output, after training, should be
high when the input contains evidence of a particular transition.
Low rank NeuroCRFs use their NN to model label emissions.
Other configurations are possible [9].

4. RNN-Based NeuroCRF
RNN-based NeuroCRFs are obtained by replacing the feed-
forward hidden layer of a NeuroCRF with a recurrent layer, so
that ht, the hidden layer vector at time t, is

ht = a(W (x)xt + W (h)ht−1 + b), (6)

where a(·) is an activation function, xt is the layer’s input vec-
tor, b is the hidden layer biases vector, W (x) is the weight ma-
trix associated with the input vector and W (h) is the weight
matrix associated with the previous output of the hidden layer.
Excluding the effect of f(·), the value of ht can only decay at a
fixed rate, since W (h) is constant. It cannot be reset or retained
as needed.

The equivalent of Equation 3 for recurrent NNs is

Ψt(yt, yt−1,x) = Gt(x)F (yt−1, yt). (7)

In this case, while the sliding window xt is used in Equation 6,
Gt = htW

(o) is also a function of previous values xt−d of the
input sequence x.

5. LSTM-Based NeuroCRF
We propose to use a LSTM layer [10, 11] to address FF NN
based NeuroCRFs’ poor support of long term dependencies be-
tween the input and output sequences. LSTM units’ ability

Train Val. Test
#Sentence 113,812 14,178 14,163
#Words 2,798,532 351,322 349,752
Entities:
#LOC 68,737 8,718 8,580
#MISC 58,826 7,322 7,462
#ORG 39,795 4,912 4,891
#PER 77,010 9,594 9,613
All 244,368 30,546 30,546

Table 1: Size of WikiNER training, validation and test corpus

to forget and remember based on the input is required by the
named entities variable length. LSTM units’ are based on a
memory cell ct, updated by interpolating the previous value
and a candidate value. This interpolation is controlled by a for-
get gate ft, weighting the previous value, and an input gate it,
weighting the candidate value. The hidden layer vector at time
t, ht, is the element-wise product of the memory cell ct and
an output gate ot. The gates and candidate values are recursive
functions of the layer’s input xt and the layer previous output
ht−1, similar to Equation 6.

It is possible to create an anti-causal LSTM layer by re-
versing the direction of the recursion. It is also possible to cre-
ate a bidirectional layer by concatenating causal and anti-causal
units. Those two sets of units are not connected to each others.

6. Experimental study
6.1. Datasets

We used the CoNLL-2003 corpus [12] to facilitate comparison
with other works. Our previous experiments suffered from two
issues with this corpus. First, the training corpus is too small,
which increased overfitting as we increased the number of pa-
rameters in our models. Second, the test corpus was also too
small, preventing us from reaching conclusions about improve-
ments. To address those issues, we retrieved the WikiNER cor-
pus (wp3) from [13]. WikiNER includes the same labels as
ConLL-2003, although the effective annotation directives are
different. The same encoding, IOB2, is used for the CoNLL-
2003 and WikiNER experiments. While we include results on
CoNLL-2003 to facilitate comparisons, most of our analysis is
based on the experiments using WikiNER.

Named entities are separated into 4 classes: location
(LOC), person (PER), organization (ORG) and miscellaneous
(MISC). Table 1 shows the size of the WikiNER training, val-
idation and test corpus, in sentence, word and entities. The
validation and test corpora were created by randomly select-
ing sentences. In both case, their size was set so that they both
contains at least 10% of all the named entities, ignoring classes.
The training corpus is the remainder of the available data and
contains almost 3 millions words.

6.2. Word Representation

We pre-trained a continuous word representation, with 100 di-
mensions, on Wikipedia1, using word2vec [14]. Words were
used without preprocessing or normalization. This word repre-
sentation was used for all the following experiments. The full
set of word representations is pruned when initializing a model,
to remove words that do not occur in the training, test or val-

1We used a dump collected in the spring of 2014.



idation corpus. This is simply done to improve training speed
and reduce the memory required. The word representation is
fine-tuned when training models.

The initial word representation is obtained from a continu-
ous bag of word (CBoW) [14]. Given a window of T = 2C +1
words, a CBoW model is trained to predict the central word
given the surrounding words. The model is a simple NN, with
linear activations. The hidden layer is the sum of the word rep-
resentations of the context part of the window. Once the CBoW
has been trained on a large corpus, those word representations
are extracted from the model and used to initialize the word rep-
resentation used by our NeuroCRFs.

6.3. Configuration

The input consists of a sliding window, using the continuous
representation combined to a randomly initialized 5 dimensions
capitalization embedding and a 5 dimensions part-of-speech
(POS) embedding. The capitalization feature indicates that a
word contains an initial upper case letter, some upper case let-
ters, only upper case letters or only lower case letters. The POS
features used were included in the datasets. Capitalization and
POS features are also used by the CRF baseline system. The
word representations are pre-trained from a CBoW model, as
described in the previous subsection.

All models consist of this input layer feeding into a hidden
layer using a hardtanh activation function. The hidden layer is
then connected to a full rank CRF layer, as described in Sec-
tion 3.

Model were trained using stochastic gradient descent, using
a non-monotone learning rate strategy [15]. Dropout [16, 17]
was used to regularize the models. We also applied L2-norm
regularization to the hidden and output layers’ weights. This
was found especially useful for the LSTM layer. We used a ran-
dom search [18] to find the hyper-parameters, including the hid-
den layer size and the size of the sliding window. The random
search found 200 hidden units for all WikiNER experiments.
For the CoNLL experiments, it found 400 and 500 units for the
FF and recurrent NeuroCRFs, respectively. The training and
testing scripts were implemented using the Theano toolkit [19].

6.4. Performance measures

NER can be conceptually decomposed into two steps. First,
segments corresponding to a named entity of some kind are ex-
tracted from the input sentence. Then, those segments are clas-
sified into a specific kind of named entity. In practise, those two
steps are not separated and are performed jointly. The same
labels used to segment the sentence are used to classify the seg-
ments. This conceptual split is useful when analyzing the dif-
ferences between two systems.

The main performance measure used is

F1 = 2
c

d + n
= 2

pr

p + r
= 2

c

cs

cs
d + n

= AcF
(s)
1 (8)

Ac =
c

cs
(9)

F
(s)
1 = 2

cs
d + n

(10)

where c is the number of correct named entities retrieved, cs is
the same ignoring class, d is the number of entities retrieved,
n is the number of entities in the reference, p = c/d is the
precision, r = c/n is the recall, F (s)

1 is the segmental F1, and
Ac is the classification accuracy. F

(s)
1 is the component of F1

Model F1 Std. Dev
CRF (Stanford) [20] 87.94 NA
NeuroCRF (FF) 88.75 0.2305
NeuroCRF (RNN) 88.90 0.1605
NeuroCRF (LSTM) 89.30 0.2432
NeuroCRF (BLSTM) 89.23 0.3703

Table 2: Experimental results for CoNLL-2003. Bold font in-
dicates statistically significant improvements over NeuroCRF
(FF).

Model F1 Std. Dev
CRF (Stanford) 86.09 NA
NeuroCRF (FF) 87.58 0.0739
NeuroCRF (RNN) 87.66 0.1386
NeuroCRF (LSTM) 89.11 0.0795
NeuroCRF (BLSTM) 89.28 0.1070

Table 3: Experimental results for WikiNER. Bold font indicates
statistically significant improvements over NeuroCRF (FF).

attributed to the segmentation step described above while Ac is
the component attributed to the classification step.

6.5. Results

The results presented in this section are the average of 10 runs,
each using the same hyper-parameters and a different random
initialization. This procedure is required to compensate for the
non-convexity of NNs. When comparing two systems, statis-
tical significance is based on a two-sided T-test. We used the
Stanford NER system [20] as a benchmark.2. The features used
by this system are a superset of the features available to the Neu-
roCRFs. In particular, capitalization and POS tags are used.

Table 23 shows that LSTM layers improved performance
compared to the FFNN baseline on the CoNLL-2003 task. In
both cases, the results were found to be statistically significant
(p ≤ 1%) using a two tailed T-Test. Because of the high vari-
ance, the reduction in F1 observed when comparing the causal
LSTM layer to the bidirectional layer was not statistically sig-
nificant (p ≥ 60%). The improved performance of NeuroCRF
(RNN), compared to NeuroCRF (FF), is not statistically signif-
icant (p ≥ 10%). All NeuroCRFs significantly outperformed
the Stanford CRF benchmark. Figure 1a shows the correspond-
ing box and whiskers plots. This figure shows clearly the large
variance caused by the random initialization.

The high variance of test results using CoNLL-2003 pre-
vent us from reaching solid conclusions. Table 3 shows the re-
sults using the much larger WikiNER task. Those results have
a significantly lower variance. The LSTM layers improved per-
formance compared to the FFNN baseline. This improvement
is statistically significant (p ≤ 0.1%). Performance is also im-
proved for the bidirectional LSTM layer, when compared to the
causal LSTM layer. This improvement is statistically signifi-
cant (p ≤ 0.1%). The improved performance of NeuroCRF
(RNN), compared to NeuroCRF (FF), is not statistically signif-
icant (p ≥ 11%). Figure 1b shows the corresponding box and
whiskers plots. This figure clearly shows the significant im-

2CoNLL-2003 results from http://nlp.stanford.edu/
projects/project-ner.shtml

3Complex CRF models, requiring significant feature engineering,
have reached F1 = 90.90 on this task [21, 22].
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Figure 1: Box and whiskers plots of experimental results. The boxes indicate the two central quartiles, separated by the median, while
the whiskers indicate the full range of the results.

Model F
(s)
1 Ac

NeuroCRF (FF) 93.75 94.66%
NeuroCRF (LSTM) 94.17 94.83%
NeuroCRF (BLSTM) 94.10 94.83%

Table 4: Segmentation (F (s)
1 ) and classification (Ac) perfor-

mance for CoNLL-2003

Model F
(s)
1 Ac

NeuroCRF (FF) 93.56 93.61%
NeuroCRF (RNN) 93.50 93.76%
NeuroCRF (LSTM) 94.23 94.57%
NeuroCRF (BLSTM) 94.29 94.69%

Table 5: Segmentation (F (s)
1 ) and classification (Ac) perfor-

mance for WikiNER

provement observed with LSTM layers.
Table 4 shows the experimental results in term of segmen-

tal F1 and classification accuracy for CoNLL-2003. The LSTM
layers improved both compared to the FFNN baseline. This is
confirmed by the equivalent results for WikiNER, shown in Ta-
ble 5. Those results show that having access to long term mem-
ory can facilitate the classification of a named entity. They also
show that the same long term memory can help the segmenta-
tion of named entities.

6.6. Impact of Context

The results presented in the previous subsection included the
context size in the hyper-parameters. We investigated the im-
portance of this parameter with a set of experiment where it is
fixed to zero. The input window for those experiments contains
only features extracted from the current word. In practice, com-
putational complexity for a LSTM layer is dominated by the
input’s dimensionality. Reducing the context size would there-
fore reduce the computational requirement of the LSTM based
system. Models were trained and tested on WikiNER.

Table 6 shows that the performance of a full rank Neuro-
CRF using a FFNN is significantly degraded with the context
is removed. The segmentation performance is reduced. More
interestingly, so is the classification accuracy, confirming that

Model F
(s)
1 Ac F1

NeuroCRF (FF) 93.56 93.61% 87.58
Without Context 91.98 91.99% 84.61
NeuroCRF (BLSTM) 94.29 94.69% 89.28
Without Context 94.23 94.70% 89.23

Table 6: Impact of context component of input for WikiNER

having access to the entire named entity is required in order to
classify it correctly. Those results confirm that NeuroCRFs us-
ing a FFNN cannot learn essential features, as those features
require the context.

Table 6 also shows that a bidirectional LSTM layer can re-
construct this context. While the segmentation performance and
therefore the F1 were lower, the degradation is not statistically
significant (p ≥ 37%). The classification performance was not
significantly affected. Those results show that NeuroCRFs us-
ing a BLSTM NN can learn to reproduce the essential parts of
the context, by using their internal memory as a substitute.

7. Conclusion
We addressed the issue of long term dependencies that limits
performance of NeuroCRF models. We found that replacing the
FF NN used for feature analysis by a recurrent NN improved
performance on two NER tasks. While the improvement was
limited with conventional recurrent layers, we obtained signifi-
cant improvements when using LSTM layers. Further improve-
ments were obtained using a bidirectional LSTM layer, where
the layer is divided into causal and anti-causal sections.

The success of those bidirectional LSTM layers motivated
a second set of experiments, where the preceding and follow-
ing words were removed from the input. As expected, remov-
ing this context severely degraded the performance of the base-
line FF based NeuroCRF. While performance were affected, the
degradation when using a bidirectional LSTM based NeuroCRF
was minimal, and was not statistically significant. Those results
show that the computational complexity of a LSTM based sys-
tem can be reduced by removing the context, without signifi-
cantly affecting performance.
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