Large-Scale Random Forest Language Models for Speech Recognition

Yi Su Fred Jelinek Sanjeev Khudanpur

Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University

Aug 29, 2007 / Interspeech

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

4 [Experimental Results](#page-23-0)

5 [Conclusions](#page-25-0)

イロト イ伊 トイヨ トイヨト

净

Decision Tree Language Models

- Language modeling as equivalence classification of histories
- N-gram language models
	- Markovian assumption

$$
P(w|h) \approx P(w|\Phi(h)) = P(w|w_{i-n+1}^{i-1}),
$$

where $h = w_1, \ldots, w_{i-1} = w_1^{i-1}$.

- Decision tree language models (Bahl et al., 1989)
	- Decision tree classifier as equivalence mapping

$$
P(w|h) \approx P(w|\Phi(h)) = P(w|\Phi_{DT}(h)).
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Decision Tree Training and Testing

- Growing (Top-down)
	- \bullet Start from the top node, which contains all *n*-gram histories in the training text;
	- Recursively split every node to increase the likelihood of the training text by an exchange algorithm (Martin et al., 1998);
	- Until splitting can no longer increase the likelihood.
- Pruning (Bottom-up)
	- Define the potential of a node as the gain in heldout data likelihood by growing it into a sub-tree
	- Prune away nodes whose potentials fall below a threshold.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Training

イロト イ団ト イヨト イヨト

G.

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Training

イロト イ団ト イヨト イヨト

G.

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Training

イロト イ団ト イヨト イヨト

 2990

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Training

イロト イ団ト イヨト イヨト

遥

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Training

イロト イ団ト イヨト イヨト

遥

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

 $2Q$

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

 $2Q$

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

 $2Q$

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

 $2Q$

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

 299

重

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

 299

重

[Random Forest Language Modeling](#page-19-0) [Large-Scale Training and Testing](#page-22-0) [Experimental Results](#page-23-0) [Conclusions](#page-25-0)

Decision Tree Language Models: Testing

イロト イ団ト イヨト イヨト

重

Decision Tree Language Models

- \bullet Failed to improve upon *n*-gram language models (Potamianos and Jelinek, 1998)
	- Without efficient search algorithm, greedy tree building procedure can't find a good tree

Random forest (Breiman, 2001)

- A collection of randomized decision trees
- Final decision by voting
- Good results in many classification tasks

K ロ ト K 何 ト K ヨ ト K ヨ

Decision Tree Language Models

- \bullet Failed to improve upon *n*-gram language models (Potamianos and Jelinek, 1998)
	- Without efficient search algorithm, greedy tree building procedure can't find a good tree
- Random forest (Breiman, 2001)
	- A collection of randomized decision trees
	- Final decision by voting
	- Good results in many classification tasks

K ロ ト K 倒 ト K ミ ト K

Random Forest Language Models

- A collection of randomized decision tree language models or an i.i.d. sample of decision trees (Xu and Jelinek, 2004)
- **•** Probability via averaging

$$
P(w|h) = \frac{1}{M} \sum_{j=1}^{M} P(w|\Phi_{DT_j}(h)).
$$

• Superior to *n*-gram language models in terms of perplexity and word error rate on small size corpora (Xu and Mangu, 2005)

K ロ ト K 何 ト K ヨ ト

Training Randomization

• Random selection of questions

 \bullet Set membership of a word in a history position *j*.

$$
q_{(j,S)}(w_1^{i-1}) = \begin{cases} \text{true} & \text{if } w_j \in S; \\ \text{false} & \text{otherwise,} \end{cases}
$$

where $1 \leq i \leq i-1$ and $S \subset V$.

- Randomly choose a subset of history positions to investigate.
- Random initialization of the exchange algorithm
	- Combat local maximum problem caused by greediness of exchange algorithm.

K ロ ト K 何 ト K ヨ ト K ヨ

 QQ

• Random sampling of the training data

• Kneser-Ney-style smoothing

$$
P(w_i|w_{i-n+1}^{i-1}) = \frac{\max(C(w_i, \Phi(w_{i-n+1}^{i-1})) - D, 0)}{C(\Phi(w_{i-n+1}^{i-1}))} + \lambda(\Phi(w_{i-n+1}^{i-1}))P_{KN}(w_i|w_{i-n+2}^{i-1})
$$

- **Can be improved by Modified Kneser-Ney smoothing** (Chen and Goodman, 1999)
	- Used in all experiments henceforth.

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

遥

Why N-gram Language Models Work

- "There is no data like more data."
	- Performance of a statistical model depends on the amount of training data
- Simplicity implies scalability
	- N-gram language models outperform complex language models by using more data

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Large-Scale Training and Testing

- Problem: Straightforward implementation quickly uses up addressable space.
	- Memory requirement grows as tree grows
- Solution: an efficient disk swapping algorithm exploiting
	- Recursive structure of binary decision tree
		- Compact representation for fast reading and writing
	- Local access property of tree-growing algorithm
		- Node-splitting depends only on the data it contains
- Achieving I/O overhead linear to the size of training *n*-gram types.

イロメ イ何 メイヨメ イヨメ

Experimental Results: Perplexity Learning Curve

- Always keeping $a > 10\%$ lead over n-gram LM
- Which translates to significant gain in WER

Figure: Learning curves

 $2Q$

K ロ ⊁ K 伊 ⊁ K ミ

Experimental Results: Word Error Rate

- IBM GALE Mandarin acoustic model
	- 585 hrs, 107K vocab, PLP+VTLN+fMLLR+fMPE
- Random forest language model
	- 700M wds, 4-gram, 7∗50 trees per forest

Table: Lattice rescoring for IBM GALE Mandarin ASR

イロメ イ何 メイヨメ イヨメ

遥

• Random forest language modeling without tears.

- Efficient disk swapping algorithm for large-scale RFLMs \bullet
- Significant improvement in IBM GALE Mandarin system

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

净

- Random forest language modeling without tears.
	- Efficient disk swapping algorithm for large-scale RFLMs
	- Significant improvement in IBM GALE Mandarin system

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

净

Acknowledgments

Many thanks to Peng Xu, Lidia Mangu, Yong Qin, Richard Sproat and Damianos Karakos!

Su, Jelinek, Khudanpur [Large-Scale RFLM](#page-0-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

遥