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Decision Tree Language Models

Language modeling as equivalence classification of
histories
N-gram language models

Markovian assumption

P(w |h) ≈ P(w |Φ(h)) = P(w |w i−1
i−n+1),

where h = w1, . . . , wi−1 = w i−1
1 .

Decision tree language models (Bahl et al., 1989)
Decision tree classifier as equivalence mapping

P(w |h) ≈ P(w |Φ(h)) = P(w |ΦDT (h)).
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Decision Tree Training and Testing

Growing (Top-down)
Start from the top node, which contains all n-gram histories
in the training text;
Recursively split every node to increase the likelihood of the
training text by an exchange algorithm (Martin et al., 1998);
Until splitting can no longer increase the likelihood.

Pruning (Bottom-up)
Define the potential of a node as the gain in heldout data
likelihood by growing it into a sub-tree
Prune away nodes whose potentials fall below a threshold.
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Decision Tree Language Models: Training
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Decision Tree Language Models: Testing
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Decision Tree Language Models

Failed to improve upon n-gram language models
(Potamianos and Jelinek, 1998)

Without efficient search algorithm, greedy tree building
procedure can’t find a good tree

Random forest (Breiman, 2001)
A collection of randomized decision trees
Final decision by voting
Good results in many classification tasks
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Random Forest Language Models

A collection of randomized decision tree language models
or an i.i.d. sample of decision trees (Xu and Jelinek, 2004)

Probability via averaging

P(w |h) =
1
M

M∑
j=1

P(w |ΦDTj (h)).

Superior to n-gram language models in terms of perplexity
and word error rate on small size corpora (Xu and Mangu,
2005)
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Training Randomization

Random selection of questions
Set membership of a word in a history position j .

q(j,S)(w
i−1
1 ) =

{
true if wj ∈ S;
false otherwise,

where 1 ≤ j ≤ i − 1 and S ⊂ V .
Randomly choose a subset of history positions to
investigate.

Random initialization of the exchange algorithm
Combat local maximum problem caused by greediness of
exchange algorithm.

Random sampling of the training data
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Smoothing

Kneser-Ney-style smoothing

P(wi |w i−1
i−n+1) =

max(C(wi ,Φ(w i−1
i−n+1))− D, 0)

C(Φ(w i−1
i−n+1))

+ λ(Φ(w i−1
i−n+1))PKN(wi |w i−1

i−n+2)

Can be improved by Modified Kneser-Ney smoothing
(Chen and Goodman, 1999)

Used in all experiments henceforth.

Su, Jelinek, Khudanpur Large-Scale RFLM



Introduction
Random Forest Language Modeling

Large-Scale Training and Testing
Experimental Results

Conclusions

Why N-gram Language Models Work

“There is no data like more data.”
Performance of a statistical model depends on the amount
of training data

Simplicity implies scalability
N-gram language models outperform complex language
models by using more data
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Large-Scale Training and Testing

Problem: Straightforward implementation quickly uses up
addressable space.

Memory requirement grows as tree grows

Solution: an efficient disk swapping algorithm exploiting
Recursive structure of binary decision tree

Compact representation for fast reading and writing
Local access property of tree-growing algorithm

Node-splitting depends only on the data it contains

Achieving I/O overhead linear to the size of training n-gram
types.
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Experimental Results: Perplexity Learning Curve

Always keeping a > 10% lead
over n-gram LM

Which translates to significant
gain in WER
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Experimental Results: Word Error Rate

IBM GALE Mandarin acoustic model
585 hrs, 107K vocab, PLP+VTLN+fMLLR+fMPE

Random forest language model
700M wds, 4-gram, 7∗50 trees per forest

Character Error Rate (%) All BN BC

Baseline 18.9 14.2 24.8
RFLM 18.3 13.4 24.4

Table: Lattice rescoring for IBM GALE Mandarin ASR
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Conclusions

Random forest language modeling without tears.

Efficient disk swapping algorithm for large-scale RFLMs

Significant improvement in IBM GALE Mandarin system
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