Large-Scale Random Forest Language Models for Speech Recognition

Yi Su Fred Jelinek Sanjeev Khudanpur

Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University

Aug 29, 2007 / Interspeech

・ロト ・回ト ・ヨト ・ヨト

Experimental Results

5 Conclusions

くロト (過) (目) (日)

Decision Tree Language Models

- Language modeling as equivalence classification of histories
- N-gram language models
 - Markovian assumption

$$P(w|h) \approx P(w|\Phi(h)) = P(w|w_{i-n+1}^{i-1}),$$

where $h = w_1, \ldots, w_{i-1} = w_1^{i-1}$.

- Decision tree language models (Bahl et al., 1989)
 - Decision tree classifier as equivalence mapping

$$P(w|h) \approx P(w|\Phi(h)) = P(w|\Phi_{DT}(h)).$$

ヘロン 人間 とくほとく ほとう

Decision Tree Training and Testing

- Growing (Top-down)
 - Start from the top node, which contains all *n*-gram histories in the training text;
 - Recursively split every node to increase the likelihood of the training text by an exchange algorithm (Martin et al., 1998);
 - Until splitting can no longer increase the likelihood.
- Pruning (Bottom-up)
 - Define the potential of a node as the gain in heldout data likelihood by growing it into a sub-tree
 - Prune away nodes whose potentials fall below a threshold.

ヘロト ヘアト ヘヨト ヘヨト

Decision Tree Language Models: Training

ヘロン 人間 とくほ とくほ とう

Decision Tree Language Models: Training

ヘロア ヘビア ヘビア・

Decision Tree Language Models: Training

Su, Jelinek, Khudanpur Large-Scale RFLM

<ロト <回 > < 注 > < 注 > 、

Decision Tree Language Models: Training

ヘロト 人間 ト くほ ト くほ トー

Decision Tree Language Models: Training

くロト (過) (目) (日)

Decision Tree Language Models: Testing

Decision Tree Language Models: Testing

Decision Tree Language Models: Testing

Decision Tree Language Models: Testing

Decision Tree Language Models: Testing

Decision Tree Language Models: Testing

Decision Tree Language Models: Testing

Decision Tree Language Models

- Failed to improve upon *n*-gram language models (Potamianos and Jelinek, 1998)
 - Without efficient search algorithm, greedy tree building procedure can't find a good tree

• Random forest (Breiman, 2001)

- A collection of randomized decision trees
- Final decision by voting
- Good results in many classification tasks

Decision Tree Language Models

- Failed to improve upon *n*-gram language models (Potamianos and Jelinek, 1998)
 - Without efficient search algorithm, greedy tree building procedure can't find a good tree
- Random forest (Breiman, 2001)
 - A collection of randomized decision trees
 - Final decision by voting
 - Good results in many classification tasks

ヘロト ヘアト ヘヨト ヘ

Random Forest Language Models

- A collection of randomized decision tree language models or an i.i.d. sample of decision trees (Xu and Jelinek, 2004)
- Probability via averaging

$$P(w|h) = rac{1}{M}\sum_{j=1}^{M}P(w|\Phi_{DT_j}(h)).$$

 Superior to *n*-gram language models in terms of perplexity and word error rate on small size corpora (Xu and Mangu, 2005)

ヘロト 人間 とくほとくほとう

Training Randomization

Random selection of questions

• Set membership of a word in a history position *j*.

$$q_{(j,S)}(w_1^{j-1}) = \begin{cases} \text{true} & \text{if } w_j \in S; \\ \text{false} & \text{otherwise,} \end{cases}$$

where $1 \le j \le i - 1$ and $S \subset V$.

- Randomly choose a subset of history positions to investigate.
- Random initialization of the exchange algorithm
 - Combat local maximum problem caused by greediness of exchange algorithm.

・ロト ・回 ト ・ ヨ ト ・ ヨ ト ・

Random sampling of the training data

Kneser-Ney-style smoothing

$$P(w_i|w_{i-n+1}^{i-1}) = \frac{\max(C(w_i, \Phi(w_{i-n+1}^{i-1})) - D, 0)}{C(\Phi(w_{i-n+1}^{i-1}))} + \lambda(\Phi(w_{i-n+1}^{i-1}))P_{KN}(w_i|w_{i-n+2}^{i-1})$$

- Can be improved by Modified Kneser-Ney smoothing (Chen and Goodman, 1999)
 - Used in all experiments henceforth.

ヘロト 人間 ト くほ ト くほ トー

Why N-gram Language Models Work

- "There is no data like more data."
 - Performance of a statistical model depends on the amount of training data
- Simplicity implies scalability
 - *N*-gram language models outperform complex language models by using more data

くロト (過) (目) (日)

Large-Scale Training and Testing

- Problem: Straightforward implementation quickly uses up addressable space.
 - Memory requirement grows as tree grows
- Solution: an efficient disk swapping algorithm exploiting
 - Recursive structure of binary decision tree
 - Compact representation for fast reading and writing
 - Local access property of tree-growing algorithm
 - Node-splitting depends only on the data it contains
- Achieving I/O overhead linear to the size of training *n*-gram types.

くロト (過) (目) (日)

Experimental Results: Perplexity Learning Curve

- Always keeping a > 10% lead over *n*-gram LM
- Which translates to significant gain in WER

Figure: Learning curves

< ロ > < 同 > < 三 >

Experimental Results: Word Error Rate

- IBM GALE Mandarin acoustic model
 - 585 hrs, 107K vocab, PLP+VTLN+fMLLR+fMPE
- Random forest language model
 - 700M wds, 4-gram, 7*50 trees per forest

Character Error Rate (%)	All	BN	BC
Baseline	18.9	14.2	24.8
RFLM	18.3	13.4	24.4

Table: Lattice rescoring for IBM GALE Mandarin ASR

くロト (過) (目) (日)

Random forest language modeling without tears.

- Efficient disk swapping algorithm for large-scale RFLMs
- Significant improvement in IBM GALE Mandarin system

イロト イポト イヨト イヨト

- Random forest language modeling without tears.
 - Efficient disk swapping algorithm for large-scale RFLMs
 - Significant improvement in IBM GALE Mandarin system

イロト イポト イヨト イヨト

 Many thanks to Peng Xu, Lidia Mangu, Yong Qin, Richard Sproat and Damianos Karakos!

Su, Jelinek, Khudanpur Large-Scale RFLM

ヘロト ヘアト ヘヨト ヘヨト