
Large-Scale Random Forest Language Models for Speech Recognition

Yi Su, Frederick Jelinek, Sanjeev Khudanpur

Center for Language and Speech Processing,
Department of Electrical and Computer Engineering,

The Johns Hopkins University, Baltimore, Maryland, USA
{suy, jelinek, khudanpur }@jhu.edu

Abstract

The random forest language model (RFLM) has shown encour-
aging results in several automatic speech recognition (ASR)
tasks but has been hindered by practical limitations, notably the
space-complexity of RFLM estimation from large amounts of
data. This paper addresses large-scale training and testing of
the RFLM via an efficient disk-swapping strategy that exploits
the recursive structure of a binary decision tree and the local ac-
cess property of the tree-growing algorithm, redeeming the full
potential of the RFLM, and opening avenues of further research,
including useful comparisons withn-gram models. Benefits of
this strategy are demonstrated by perplexity reduction and lat-
tice rescoring experiments using a state-of-the-art ASR system.

Index Terms: random forest language model, large-scale train-
ing, data scaling, speech recognition

1. Introduction

A language model (LM) is a crucial part of many natural lan-
guage processing tasks, such as speech recognition, statistical
machine translation and information retrieval, among others.
With the help of several good smoothing techniques, which
were systematically studied in [1], then-gram language model
gained great popularity because of its simplicity and surpris-
ingly good performance.

Several new models have been proposed over the years with
varying degrees of success. Recently the random forest lan-
guage model [2], which is a natural extension of the decision
tree language model [3], has been proposed and shown en-
couraging results in a state-of-the-art conversational telephone
speech recognition system [4]. However, due to the space com-
plexity of the model training algorithm, it has to settle for a sam-
pling trick to accommodate a large training corpus. We propose
an efficient divide-and-conquer disk swapping algorithm to al-
leviate this problem so that the strength of RFLM can be fully
realized. Experimental results in terms of both perplexity and
word error rate are presented to illustrate the benefits of this
algorithm.

The rest of the paper is organized as follows: in Section 2,
we briefly review the basic ideas behind then-gram, decision
tree and random forest language models, and their relatedness.
Some details on the training and testing procedures of RFLM
are provided in Section 3. In Section 4, we present our algo-
rithms for training and testing RFLMs on a large scale. Exper-
imental results appear in Section 5, and concluding remarks in
Section 6.

2. Language models
A language model is a probability distribution over the set of all
possible strings from a vocabulary. LetW = w1 . . . wN ∈ V ∗

denote a string ofN words, whereV is the vocabulary. Using
the chain rule, we have

P (W) =

NY
i=1

P (wi|w1, . . . , wi−1), (1)

wherew1, . . . , wi−1 is referred to as ahistory. To facilitate
reliable probability estimation from data, the set of histories is
divided in practice into reasonable equivalence classes. i.e.

P (W) ≈
NY

i=1

P (wi|Φ(w1, . . . , wi−1)), (2)

whereΦ : V ∗ 7→ C denotes the equivalence classification.

N -gram language models:Taking the view of language mod-
eling as equivalence classification of histories, then-gram lan-
guage model simply defines a Markovian equivalence mapping
Φn by only looking at the lastn−1 words of a history. i.e.,

P (w|h) , P (w|Φn(h)) = P (w|wi−1
i−n+1), (3)

whereh is the history andwi−1
i−n+1 represents the class of histo-

ries that share the same(n−1)-suffix wi−n+1, . . . , wi−1.

Decision tree language models:Starting with all histories
in one equivalence class, the decision tree language model
(DTLM) [3] successively refines the equivalence classification
by asking questions about words in different history-positions,
until some stopping criterion is reached.

P (w|h) , P (w|Φ(h)) = P (w|ΦDT (h)). (4)

Studies have shown that given modest amounts of training data,
the DTLM fails to improve upon then-gram LM [5].

Random forest language models:The random forest language
model [2] is a collection of randomized DTLMs, whose trees
may be viewed as i.i.d. samples from a subset of possible trees.
The LM probability is defined as the average of the probabilities
from all the DTLMs:

P (w|h) ,
1

M

MX
j=1

P (w|ΦDTj (h)). (5)

Note that then-gram LM may be seen as a naı̈ve DTLM that
refines the equivalence classification by asking only about the
identities of consecutive words in the history, and the DTLM
may be seen as a RFLM with only one tree.

3. Random forest language modeling
Our decision tree training procedure, following [6], consists a
growing and apruning stage. In the growing stage, we start
from a single node which contains alln-gram histories in the
training text and recursively split every node by an exchange
algorithm [7] until further splitting does not increase the like-
lihood of the training text. In the pruning stage, we compute
the potentialof each node—the possible gain in held-out data
likelihood from growing the node into a sub-tree. Nodes whose
potential falls below a threshold are pruned, bottom-up. The
questions we are currently using simply ask whether thei-th
previous wordw−i belongs to a set of wordsS and1 ≤ i < n.
We will refer ton as theorder of the RFLM.

Randomization may be used in three places in the decision
tree training procedure: question set selection, exchange algo-
rithm initialization and data sampling. Due to the greediness
of the exchange algorithm, restricting the candidate questions
at each node-splitting step to arandom subsetof all available
questions helps find a better tree. The same argument holds for
random initialization. However, random sampling of training
data has not been beneficial to RFLM [8], and is used only to
circumvent the space-complexity of DTLM training from large
data. In this paper, we will randomize in only the fist two ways
mentioned above, and address the space-complexity directly.

We use interpolated Kneser-Ney smoothing, as defined in
[1], to compute the LM probabilities

P (wi|wi−1
i−n+1) =

max(C(wi, Φ(wi−1
i−n+1))−D, 0)

C(Φ(wi−1
i−n+1))

+ λ(Φ(wi−1
i−n+1))PKN (wi|wi−1

i−n+2), (6)

whereD is aconstant discountandPKN (·) is the Kneser-Ney
backoff probability distribution. In Section 5.1, we will show
that the version of this smoothing method, whereby three dis-
countsD1, D2 andD3+ are used forn-grams with one, two
and three or more counts respectively, further reduces perplex-
ity as suggested in [1].

4. Large-scale training and testing
Despite several recent advances in language modeling, most
state-of-the-art speech recognizers still usen-gram LMs as their
first choice. The primary reason is that the amount of text avail-
able for training LMs has also been growing steadily, so that
while more sophisticated LMs may be competitive withn-gram
LMs on the same sized training corpus, they often require larger
computational resources for training, and therefore have a hard
time scaling up, giving weak learners such asn-gram LMs a
chance to surpass them simply by using larger training corpora.
A case in point is that the maximum entropy LM [9] gained
much more deserving popularity only after efficient training al-
gorithms like [10] were proposed. Studies like [11] also present
similar analyses. Therefore, an LM will have limited utility un-
less it scales up nicely.

The RFLM estimation procedure of [2, 4, 8] has severe
problems scaling up to training corpora beyond a few 10’s of
millions of words, while standard toolkits can estimaten-gram
language models from 100’s of millions, even billions of words.
One key design decision in [8] is that alln-grams seen in train-
ing are retained in memory for estimating each (randomized)
DTLM. This, by itself need not be a limitation, since machines
with several GB of core memory are becoming commonplace.
The problem is that as the DTLM grows, typically to millions

of internal nodes, additional memory is continually needed, par-
ticularly for storing “questions” — about membership in arbi-
trary subsets ofV — asked at each internal node. Thus the size
of the eventual DTLM grows with training data and, in prac-
tice, this procedure runs out of available memory before DTLM
training is terminated by its natural stopping rules. We have ad-
dressed this problem, devising a solution that permits training
the RFLM on much larger corpora than previously possible.

Key insights: when the DTLM training procedure runs out
of memory, the partially grown tree may be written out to disk,
marking each node that has not yet been declared aleaf, along
with the subset of then-grams from the training data that “fall”
into eachnon-terminalnodes. The DTLM training procedure
may then be performed recursively for each of the unfinished
nodes, again possibly writing unfinished sub-trees to disk, pro-
vided aglobalpriority queue is maintained to indicate which of
the non-terminal nodes should be considered next for splitting.

4.1. Algorithms

The DTLM growing and pruning stages of the original algo-
rithm in [8] need to be modified as follows, and one more step
needs to be added to achieve the goal described above:

Growing: When the number of nodes exceeds a threshold, stop
growing the tree andswap out; Add any unfinished nodes
to an agenda (priority queue);Swap inthe top unfinished
nodes according to the agenda, and continue growing.

Pruning: Move the computation of held-out data likelihood
and size to the growing stage to save one pass of disk
swapping; Rewrite node-potentials as functions of held-
out data likelihood and size; Compute the potential for
each node recursively in a bottom-up fashion and prune
away nodes whose potentials are below an empirically
chosen threshold.

Clean-Up: Go through the whole tree one more time to remove
any internal nodes that were not pruned during the “em-
bedded” pruning stage described above (due to unavail-
ability of descendant node-potentials).

The first part of the algorithm (“Growing”) is illustrated in Al-
gorithm 1 and Algorithm 2. Algorithm SplitNode is unchanged
from the original [8] (Page 44, Algorithm Node-Split(p)) and
therefore omitted. For the second part (“Pruning”), letl(n)

Algorithm 1 : Grow(D)

Input : DataD
Output : Fully grown treeT
begin

Initialize agenda with the root nodeN ;
while agenda not finisheddo

Take noden out of agenda;

::::
Swap

::
in datad for noden from disk;

(t, {ni}, {di})← GrowSubtree(n, d) ;
Write subtreet to disk fileT ;

::::
Swap

:::
out data{di} for nodes{ni} to disk;

Put unfinished nodes{ni} in agenda;
end
Return treeT ;

end

ands(n) be the log-likelihood and size of the heldout dataat
the noden, i.e., the log-likelihood and size of the heldout data
if the subtree rooted at this node was pruned away. LetL(n)

Algorithm 2 : GrowSubtree(N, D)

Input : NodeN and its dataD
Output : TreeT , unfinished nodes and their data

({ni}, {di})
begin

Initialize agenda with nodeN ;
K ← 1;
while agenda not finished and

::::::::::::
K ≤ thresholddo

Take noden out of agenda;
if SplitNode(n, d) succeedsthen

Put children nodesnL andnR in agenda;
K ← K + 2;

end
end
Return treeT , remaining nodes{ni} in agenda and
their data{di} if there is any;

end

andS(n) be the log-likelihood and size of the heldout databe-
low the noden, i.e., the would-be log-likelihood and size of
the heldout data if the entire subtree rooted at this node was
retained. Thepotentialof the node,P (n), is defined as

P (n) =
L(n)

S(n)
− l(n)

s(n)
, (7)

whereL(n) andS(n) can be computed recursively as

L(n) =


l(n) if noden is a leaf;
L(nL) + L(nR) otherwise.

(8)

S(n) =


s(n) if noden is a leaf;
S(nL) + S(nR) otherwise.

(9)

wherenL andnR are the left and right children of the noden,
respectively.

Note that although the computation ofl(n) ands(n) is con-
ceptually part of pruning, it is done in the growing stage of this
algorithm because the move can save a whole pass of examin-
ing the tree through disk swapping. This highlights one of the
many design decisions we made when dealing with the space
complexity problem by trading I/O time, while striving to keep
the overhead as low as possible.

5. Experiments
5.1. Modified smoothing

In the first experiment we would like to verify our hypothesis
that the modified Kneser-Ney smoothing [1] improves the per-
formance of the RFLM as it does that of then-gram LM. We
used Wall Street Journal portion of the Penn Treebank [12]. Fol-
lowing [2], we preprocessed the text by lowercasing words, re-
moving punctuations and replacing numbers with the “N” sym-
bol. Sections 00-20 (929,564 words), sections 21-22 (73,760
words) and sections 23-24 (82,430 words) were used as train-
ing, held-out and testing data, respectively. The vocabulary size
was 10k, including a special token for unknown words.

We contrasted regular with modified Kneser-Ney smooth-
ing scheme when the forest consisted ofy trees, wherey =
1, 2, 3, 4, 5, 7, 10, 20, 50 and100. Because of the random na-
ture of the RFLM, each experiment was repeated 10 times. The
mean and standard deviation of the test data perplexities were
plotted as error bars in Figure 1.

0 10 20 30 40 50 60 70 80 90 100
125

130

135

140

145

150

155

160

165

170

number of trees

pe
rp

le
xi

ty

Modified Kneser−Ney vs Regular Kneser−Ney

Random forest using Modified Kneser−Ney
Random forest using Regular Kneser−Ney
Baseline 3−gram using Modified Kneser−Ney
Baseline 3−gram using Regular Kneser−Ney

Figure 1: Smoothing RFLM: modified vs regular

We conclude from Figure 1 that the modified Kneser-Ney
smoothing did improve upon the regular, as expected. More in-
terestingly, the gap decreased as the number of trees in the for-
est increased, supporting the claim in [8] that the RFLM beats
the n-gram LM by better smoothing. Because the additional
computation incurred when switching from regular to modified
smoothing was negligible, we used the latter henceforth.

5.2. Learning curves

Our second experiment was to compare the learning curves of
the Kneser-Ney smoothed4-gram language model with RFLM
of the same order. For this purpose we chose to work with
the 525 million words English WEB data from University of
Washington, which was also used in [4]. The firstx million
words of the WEB data, wherex = 1, 2, 4, 8, 16, 32 and64,
were used as training data and 2 million words from the Fisher
data were used as held-out. (The largest amount of training text
we could accommodate, without any counts cut-off, was about
100M words, given that the addressable space for a single pro-
cess in a 32-bit machine is 4GB.) Another 2 million words from
the Fisher corpus were used for testing. The vocabulary con-
tained 30k word types. The number of trees per forest was 100.

From Fig. 2 we can see that the RFLM scaled at least as
well as then-gram LM, while keeping a more than10% lead in
perplexity.

5.3. Lattice rescoring

Building a RFLM for the IBM GALE Mandarin ASR sys-
tem was exactly the challenge this work was trying to meet.
The acoustic model of this recognizer was trained on 585
hours of speech with PLP features by first building a speaker-
independent model, then adapting it to speaker clusters using
VTLN, fMLLR and fMPE training.

Because the content of this task was mainly broadcast news
(BN) and broadcast conversation (BC), the available amount of
text for training a language model was huge. Specifically the
text we used was organized into seven parts: xin.0 and xin.1
(Xinhua News), cna.1.0 and cna.1.1 (Central News Agency),
pdcr (People’s Daily and China Radio), tdt (TDT-2,3,4 and
HUB-4), gwd (UWashington general web data). Each con-

0 10 20 30 40 50 60 70
90

100

110

120

130

140

150

160

170

180

million words training text

pe
rp

le
xi

ty

Random Forest vs Kneser−Ney N−gram Learning Curves

Kneser−Ney
Random Forest

Figure 2: Learning curves in terms of perplexity

tained about100 million words as segmented by a maximum-
matching segmenter with respect to the 107k vocabulary used
by the acoustic model.

We built a 4-gram RFLM with 50 trees for each of the seven
parts then interpolated them together to rescore the lattices gen-
erated by the IBM system. (We used 50 trees per forest instead
of 100, as we usually do, because 50 trees worked as good as
100 on the heldout data but halved the computational effort.)
Interpolation weights were determined using the current one-
best output on a per show basis. Note that these lattices had
already been rescored once by a regular 4-gram LM (“Base-
line”), which was trained on 602 million words text from 13
different sources. As shown in Table 1, we got a0.6% absolute

Character Error Rate (%) All BN BC

Baseline 18.9 14.2 24.8
RFLM 18.3 13.4 24.4

Table 1: Lattice rescoring for IBM GALE Mandarin ASR

reduction in CER, which was statistically significant in a sign
test withp < 0.001.

6. Conclusions
We proposed an efficient disk swapping algorithm to deal with
the space complexity problem in building random forest lan-
guage models. By taking advantage of the recursive structure
of binary decision tree and locality of the original tree grow-
ing algorithm, we successfully kept the I/O time overhead to be
linear in the number of distinct trainingn-grams. With this ap-
proach, we empirically studied the scaling performance of the
RFLM and showcased our achievement by statistically signifi-
cantly improving the performance of the IBM GALE Mandarin
ASR system.

7. Acknowledgments
We are grateful to Peng Xu for his RFLM source code,
Lidia Mangu and Yong Qin for word lattices from their GALE

ASR system, and Richard Sproat for his Chinese word seg-
mentation script. We particularly thank Damianos Karakos for
significant assistance in experimentation, and for comments on
the manuscript. This research was partially supported by the
DARPA GALE program (contract No

¯
HR0011-06-2-0001).

8. References
[1] S. F. Chen and J. Goodman, “An empirical study of

smoothing techniques for language modeling,”Computer
Speech and Language, vol. 13, pp. 359–394, 1999.

[2] P. Xu and F. Jelinek, “Random forests in language model-
ing,” in Proceedings of EMNLP 2004, D. Lin and D. Wu,
Eds. Barcelona, Spain: Association for Computational
Linguistics, 2004, pp. 325–332.

[3] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer,
“A tree-based statistical language model for natural lan-
guage speech recognition,”IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 37, no. 7, pp.
1001–1008, 1989.

[4] P. Xu and L. Mangu, “Using random forest language mod-
els in the IBM RT-04 CTS system,” inProceedings of
INTERSPEECH-2005, 2005, pp. 741–744.

[5] G. Potamianos and F. Jelinek, “A study of n-gram and
decision tree letter language modeling methods,”Speech
Communication, vol. 24, no. 3, pp. 171–192, 1998.

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Ol-
shen,Classification and Regression Trees. Chapman and
Hall/CRC, 1984.

[7] S. Martin, J. Liermann, and H. Ney, “Algorithms for bi-
gram and trigram word clustering,”Speech Communica-
tion, vol. 24, no. 1, pp. 19–37, 1998.

[8] P. Xu, “Random forests and the data sparseness problem
in language modeling,” Ph.D. dissertation, Johns Hopkins
University, 2005.

[9] R. Rosenfeld, “A maximum entropy approach to adap-
tive statistical language modelling,”Computer Speech and
Language, vol. 10, pp. 187–228, 1996.

[10] J. Wu and S. Khudanpur, “Efficient training methods for
maximum entropy language modeling,” inProceedings of
ICSLP-2000, 2000.

[11] M. Banko and E. Brill, “Mitigating the paucity-of-data
problem: Exploring the effect of training corpus size on
classifier performance for natural language processing,” in
Proceedings of the Conference on Human Language Tech-
nology, 2001.

[12] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,
“Building a large annotated corpus of English: the Penn
Treebank,”Computational Linguistics, vol. 19, no. 2, pp.
313–330, 1993.

