
FULL-RANK LINEAR-CHAIN NEUROCRF FOR SEQUENCE LABELING

Marc-Antoine Rondeau1∗ , Yi Su2

1McGill University
2Nuance Communications

marc-antoine.rondeaubeauchamp@mail.mcgill.ca,yi.su@nuance.com

ABSTRACT
Inspired by the success of deep neural network-hidden
Markov model (DNN-HMM) in acoustic modeling for au-
tomatic speech recognition, a number of researchers from
various fields have independently proposed the idea of com-
bining DNN and conditional random fields (CRFs). Despite
their subtle differences, this class of models is collectively
referred to as “NeuroCRF” in this paper. We focus our atten-
tion on applying a linear-chain NeuroCRF to the fundamental
and ubiquitous problem of sequence labeling in natural lan-
guage processing with distributed word representations. We
question the necessity of previous works’ use of the neural
network to learn a low-rank emission feature matrix, added
to a transition feature matrix. By modeling a full-rank feature
matrix directly, we show that statistically significant gains
can be achieved on the CoNLL-2000 syntactic chunking task,
without harming performance on tasks with low dependen-
cies between consecutive labels, such as the CoNLL-2003
named entity recognition task.

Index Terms— Neural networks, spoken language under-
standing, conditional random fields

1. INTRODUCTION

Deep neural networks (NNs) and hidden Markov models
(HMMs) have been successfully combined to improve auto-
matic speech recognition (ASR) performance. Neural net-
works have also been successfully used in language models
[1]. A number of researchers have built on those successes
and proposed combination of NNs and conditional random
fields (CRFs) [2, 3, 4, 5]. This vast class of models is referred
as “NeuroCRFs” in this paper.

CRFs factorize a conditional distribution into simpler,
usually exponential, factor functions. The factor functions
rely on features extracted from an input sequence and an
output sequence, with associated feature weights. CRFs are
used to find the most likely output sequence, given an input
sequence.

Like CRFs, NeuroCRFs have been applied to sequence
labeling, a key meta-task in spoken language understanding

∗The author performed this work while interning at Nuance

[4, 5]. A large number of problem can be solved by assigning
labels to words in a sentence and interpreting the resulting
label sequence. This paper focuses on labeling using linear-
chain NeuroCRFs based on distributed word representations.

The common form of this approach is to use a NN to
generate emission weights, corresponding to a label being as-
signed to a specific word. Those are complemented by con-
stant transition weights, corresponding to a label directly fol-
lowing another label. In this paper, NeuroCRFs of this form
are referred as “low-rank NeuroCRFs”.

The NN can be used to generate transition weights di-
rectly. This is the approach presented in this paper. We refer
to the resulting models as “full-rank NeuroCRFs”.

The NeuroCRFs discussed in this paper represent the
words in the input sequence using a distributed word repre-
sentation, also know as “word embedding” or “continuous
word representation”. Those representations are pre-trained
on unlabeled data, such that similar words tend to have similar
representations [6, 4, 7, 8].

The process used to extract information from a sentence
by labeling is summarized in Section 2. Low-rank Neuro-
CRFs will be defined in Section 3. The approach to minimize
a NeuroCRF’s loss function will also be summarized in Sec-
tion 3. The notion of NeuroCRF rank is explained in Sec-
tion 4. Full-rank NeuroCRFs are also defined in Section 4.
Finally, Section 5 will present an experimental study to eval-
uate the impact of its rank on a NeuroCRF’s performance.

2. INFORMATION EXTRACTION BY LABELING

In this paper, we look at NeuroCRFs applied to information
extraction. Those tasks consist of extracting relevant seg-
ments from a natural language sentence and classifying those
segments. This is done by assigning a label to each word.
Those labels correspond to the NeuroCRF’s states – “label”
and “state” are used interchangeably in this paper. The seg-
ments are then extracted from the resulting label sequence.
Table 1 lists the types of label used.

Table 1: BIOES labeling scheme. Labels indicate the posi-
tion of words in a segment, and the class of the segment.

O : Word is not part of a segment
S-class : Word is a single-word segment
B-class : First word of multi-word segment
E-class : Last word of multi-word segment
I-class : Other words of multi-word segment

3. NEUROCRF

Conditional random fields are a class of graphical models
defining a conditional distribution p(y|x) of an output se-
quence y given an input sequence x [9]. The distribution is
factorized according to a factor graph, commonly a linear-
chain. A linear-chain CRF with factors corresponding to
the emission and transition probabilities of a hidden Markov
model is defined as:

p(y|x) = 1

Z(x)

T∏
t=1

exp
(
G(xt)F (yt) + F>(yt−1)AF (yt)

)
(1)

Z(x) =
∑

y′∈gen(xt)

T∏
t=1

exp
(
G(xt)F (y′t) + F>(y′t−1)AF (y′t)

)
(2)

where x and y are a pair of input and output sequences of
length T , gen(x) is the set of possible output sequences,
G(xt) is a matrix of emission scores obtained from a subset
of x centered at time t, and A is a transition matrix for a
transition from output y to output y′. F (y) is an indicator
matrix, which selects the correct element from G(xt) and
A. All elements in F (y) are zero, except for the element
corresponding to y. With K being the number of possible
states (i.e. labels), G(xt) is a 1 by K matrix, F (y) is a K by
1 matrix and A is a K by K matrix, with one row per source
state and one column per destination state.

In a NeuroCRF, the emission matrix is the output of a neu-
ral network. The NN’s input, xt is a sliding window, centred
on the tth words. Words are replaced by a continuous word
representation [6, 4, 7, 8]. The representations are pre-trained
on a large amount of unlabeled data. Complementary fea-
tures, such as gazetteer matches, can be included in xt.

3.1. Training

The transition features and the NN are trained simultaneously,
by minimizing the loss function L(y|x) = − log p(y|x) us-
ing stochastic gradient descent. The gradient ∂L(y|x)

∂ny
of this

function with respect to the NN’s outputs is back-propagated
through the NN, updating its weights and biases. As shown in

[9], this is done using dynamic programming, which removes
the need for an explicit enumeration of all possible y.

3.2. Regularization and Dropout

Models were regularized using norm regularization and
dropout [10, 11]. When training with dropout, hidden units
are randomly removed from the network. This should pre-
vent co-adaptation of the hidden units to the training data.
Without dropout, multiple hidden units could detect a group
of features than tend to co-occur in the training data. Those
same co-occurrences are unlikely to be present in the test
data, which will prevent the detection of the features. With
dropout, the model will tend to create individual feature de-
tectors, which are less affected by the co-occurrence of their
feature in the training data.

4. FULL-RANK NEUROCRF

Equation 1, which has been used in previous work [4], can be
re-written as:

p(y|x) = 1

Z(x)

T∏
t=1

exp
(
F>(yt−1) (RG(xt) +A)F (yt)

)
,

(3)
where R is a constant column of K ones, one per state. The
effective NN output matrix Ĝ(xt) = RG(xt) is a K by K
matrix whose rank is 1. We propose to replace this low-rank
NeuroCRF with a full-rank NeuroCRF by modeling Ĝ(xt)
directly. The NN of a full-rank NeuroCRF has K2 outputs,
one per state transition. This removes the need for a separate
transition matrix, which is redundant with the biases of the
NN’s output layer. A full-rank NeuroCRF is defined as:

p(y|x) = 1

Z(x)

T∏
t=1

exp
(
F>(yt−1)G(xt)F (yt)

)
. (4)

Its NN output matrix has a rank of K.

4.1. Motivation

A low-rank NeuroCRF’s NN is used to model emission
weights as a function of the input, but not of the previous
state. The transition weights are fixed after training, and are
not a function of the input. This structure is inherited from
HMMs. HMMs assume that the visible output (e.g. sound)
are generated by a hidden state (e.g. phoneme segment), and
that it is independent of the previous state.

Removing this assumption enables the NN to learn more
complex relations between the visible input (the NN input
window) and the state sequence y. The NN becomes free
to assign probability mass not only to a specific state but to a
specific state in a specific context.

Finally, it should be noted that a full-rank NeuroCRF can
learn parameters equivalent to a low-rank NeuroCRF. When

Table 2: Test, validation and training size in sentences, words
and segments.

Sentences # Words # Segments
Chunking (CoNLL-2000)

Test 2,012 47,377 23,852
Validation 1,000 23,615 11,958
Training 7,936 188,112 95,020

NER (CoNLL-2003)
Test 3,453 46,435 5,648
Validation 3,250 51,362 5,942
Training 14,041 203,621 23,499

the added degrees of freedom are not necessary, a full-rank
NeuroCRF should learn parameters equivalent to those of a
low-rank NeuroCRF.

5. EXPERIMENTAL STUDY

5.1. Datasets

NeuroCRFs were applied to two shared tasks, CoNLL-2000
and CoNLL-2003 [12, 13] Segments were extracted, from
natural language sentences, and classified. The nature of
those segments differs. CoNLL-2000 is a syntactic chunking
task, where the segments are defined by their syntactic role
in the sentence. CoNLL-2003 is a named entity recognition
task (NER), where the segments are named entities. Follow-
ing [4], the data were relabeled to use the BIOES labeling
scheme described in Section 2.

For CoNLL-2000, a validation set was created by select-
ing 1,000 random sentences from the training set. This vali-
dation set was added to the training set when training the final
models. CoNLL-2000 uses 11 classes, resulting in 45 labels.
In the training set, 87% of the words are part of a segment,
with an average length of 1.77 words. CoNLL-2003 uses 4
classes, resulting in 17 labels. In the training set, 17% of the
words are part of a segment, with an average length of 1.45
words. The validation set was not added to the training set
when training the final models. Table 2 shows the size of the
test, validation and training sets in sentences, words and seg-
ments.

5.2. Configuration

All the neural-networks used in this study have a linear out-
put layer and a single hidden layer, with a hard hyperbolic
tangent activation function, following [4]. The input to those
networks is based on a pre-trained continuous word repre-
sentation augmented by a capitalization representation and
a part-of-speech representation. The capitalization and part-
of-speech representations are initialized randomly and are

Table 3: Training sets’ details.

Chunking NER
Words inside segment 163,700 34,600
Average segment length 1.77 1.45
% Segments length 1 55.98% 63.11%
Entropy (labels) 3.36 1.24
Conditional entropy 1.52 0.87
Mutual information 1.84 0.37

Table 4: Experimental results with and without dropout.

Chunking NER
Without With Without With

Benchmark [4] 94.32 N/A 88.67 N/A
Low-Rank 94.45 94.33 88.53 88.63
Full-Rank 94.61 94.57 87.92 88.65

not pre-trained. The pre-trained word representation is the
“LM2” word representation used in [4]. The input vector of
the network is a sliding window containing the central word,
the previous 2 words and the following 2 words.

Random search [14] was used to find the learning rate,
the size of the hidden layer, regularizations coefficients and
dropout rate (when used). We did this search for low-rank
and full-rank NeuroCRFs.

5.3. Results

Table 4 shows average F1 for 10 random initializations per
configuration. We used results from [4], which is equivalent
to a low-rank NeuroCRF, as a benchmark. We report the av-
erage F1 from ten random initializations, with and without
dropout. As expected, the full-rank NeuroCRF significantly
improved performance for chunking (p ≤ 1% with a Welsh’s
t-test). Unfortunately, we cannot report a similar results for
NER, where we obtained a statistically significant degrada-
tion.

Tables 2 and 3 indicate two significant difference between
those two tasks. First, while both tasks are trained on a similar
number of words, the chunking task (CoNLL-2000) contains
more segments, and most of the words are in a segment. For
NER (CoNLL-2003), most of the words are not in a segment.
Low-rank NeuroCRFs are simpler models and can be trained
with less data. More data is required when training full-rank
NeuroCRFs.

Secondly, the advantages of full-rank NeuroCRFs depend
on the assumption that a label is dependent on the previous
label. If this assumption does not hold, and labels are ef-
fectively independent of each others, full-rank NeuroCRFs

94.3 94.4 94.5 94.6 94.7 94.8

Precision

94.3

94.4

94.5

94.6

94.7

94.8

R
ec

al
l

Low-Rank
Full-Rank

(a) Chunking (CoNLL-2000)

88.0 88.2 88.4 88.6 88.8 89.0

Precision

88.0

88.2

88.4

88.6

88.8

89.0

R
ec

al
l

Low-Rank
Full-Rank

(b) NER (CoNLL-2003)

Fig. 1: Precision vs recall

should not outperform low-rank NeuroCRFs. Table 3 shows
that for both tasks, knowing the previous label reduces the
uncertainty, confirming that there is a dependency between
consecutive labels. This dependency is stronger, in relative
and absolute terms, for the chunking task than it is for the
NER task.

Ideally, full-rank NeuroCRFs should be able to learn
parameters equivalent to those of a low-rank NeuroCRF in
those situations. We trained NeuroCRFs with dropout, after
a new hyper-parameters search, and compared the results.
Table 4 shows the results of those experiments. For NER,
low-rank and full-rank NeuroCRFs’ average F1 are improved
by dropout. For low-rank NeuroCRF, the difference is not sta-
tistically significant. The dropout rates found by the random
search are different: 29% for low-ranks and 62% for full-
rank. This confirms that full-rank NeuroCRFs require more
regularization to prevent overfitting. The lack of improve-
ment confirms that the low level of inter-label dependency
indicated by the conditional entropy is not sufficient for a
full-rank NeuroCRF. In this case, with proper regularization,
the model learns parameters equivalent to those of a low-rank
NeuroCRF.

For chunking, low-rank and full-rank NeuroCRFs’ aver-
age F1 are reduced by dropout. Full-rank NeuroCRFs are
still significantly better. Those models were already regular-
ized by early stopping and norm regularization. The addition
of dropout was unnecessary and over-regularized the models.
The degradation is not statistically significant for the full-rank
NeuroCRFs, but is significant for the low-rank NeuroCRFs.
This confirms that full-rank NeuroCRFs need more regular-
ization and that the effective training set size is important.

Figure 1 shows the precisions and recalls obtained for

chunking and NER. For chunking, the low-rank and full-rank
NeuroCRFs do not occupy the same space. Full-rank Neu-
roCRFs have a significantly higher precision, and a higher
average recall. For NER, the low-rank and full-rank Neuro-
CRFs occupy the same space, confirming that the difference
between the average F1 is not significant.

6. CONCLUSIONS

Neural networks are commonly used to model emission fea-
tures for CRFs. This combination of neural networks and
CRFs can be expressed as a rank-deficient matrix computed
by the neural network added to a constant transition matrix.
We proposed to replace the rank-deficient matrix by a full
rank matrix, where the neural network models emission and
transition features simultaneously. We refer to this combina-
tion as a full-rank NeuroCRF.

Full-rank NeuroCRFs outperformed low-rank Neuro-
CRFs on a syntactic chunking task. Those two classes of
models were equivalent on a named entities recognition task.
The syntactic chunking task includes significant dependen-
cies between consecutive labels, which are well modeled by
full-rank NeuroCRFs. The named entities recognition task
does not have such dependencies. In this case, with proper
regularization, the full-rank NeuroCRFs were equivalent to
low-rank NeuroCRFs.

7. ACKNOWLEDGEMENTS

The authors would like to thank David Huggins-Daines, Paul
Vozila, Ding Liu, and Joumana Ghosn from Nuance for their
helpful suggestions and comments.

8. REFERENCES

[1] Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain, “Neu-
ral probabilistic language models,” in Innovations in
Machine Learning, pp. 137–186. Springer, 2003.

[2] Jian Peng, Liefeng Bo, and Jinbo Xu, “Conditional neu-
ral fields,” in Advances in Neural Information Process-
ing Systems 22, Y. Bengio, D. Schuurmans, J.D. Laf-
ferty, C.K.I. Williams, and A. Culotta, Eds., pp. 1419–
1427. Curran Associates, Inc., 2009.

[3] Trinh Do, Thierry Arti, et al., “Neural conditional ran-
dom fields,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 177–184.

[4] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa, “Natural
language processing (almost) from scratch,” The Jour-
nal of Machine Learning Research, vol. 12, pp. 2493–
2537, 2011.

[5] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang,
Yangyang Shi, and Dong Yu, “Recurrent neural net-
works for language understanding,” August 2013, Inter-
speech.

[6] Ronan Collobert and Jason Weston, “A unified archi-
tecture for natural language processing: Deep neural
networks with multitask learning,” in Proceedings of
the 25th international conference on Machine learning.
ACM, 2008, pp. 160–167.

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean, “Distributed representations of
words and phrases and their compositionality,” Neu-
ral Information Processing Systems conference, vol.
abs/1310.4546, 2013.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean, “Efficient estimation of word representations in
vector space,” Proceedings of Workshop at ICLR, 2013.

[9] Charles Sutton and Andrew McCallum, An introduction
to conditional random fields for relational learning, In-

troduction to statistical relational learning. MIT Press,
2006.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105.

[11] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov, “Improv-
ing neural networks by preventing co-adaptation of fea-
ture detectors,” arXiv preprint arXiv:1207.0580, 2012.

[12] Erik F. Tjong Kim Sang and Sabine Buchholz, “Intro-
duction to the conll-2000 shared task: Chunking,” in
Proceedings of the 2Nd Workshop on Learning Lan-
guage in Logic and the 4th Conference on Computa-
tional Natural Language Learning - Volume 7, Strouds-
burg, PA, USA, 2000, ConLL ’00, pp. 127–132, Asso-
ciation for Computational Linguistics.

[13] Erik F. Tjong Kim Sang and Fien De Meulder, “In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition,” in Proceedings
of CoNLL-2003, Walter Daelemans and Miles Osborne,
Eds. 2003, pp. 142–147, Edmonton, Canada.

[14] James Bergstra and Yoshua Bengio, “Random search for
hyper-parameter optimization,” J. Mach. Learn. Res.,
vol. 13, pp. 281–305, Feb. 2012.

[15] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio, “Theano: a CPU and GPU math expression com-
piler,” in Proceedings of the Python for Scientific Com-
puting Conference (SciPy), June 2010, Oral Presenta-
tion.

[16] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio, “Theano: new
features and speed improvements,” Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

