
INVESTIGATING LINGUISTIC KNOWLEDGE IN
A MAXIMUM ENTROPY TOKEN-BASED LANGUAGE MODEL

Jia Cui, Yi Su, Keith Hall and Frederick Jelinek

Center for Language and Speech Processing
The Johns Hopkins University, Baltimore, MD, USA
{cuijia,suy,keith hall,jelinek}@jhu.edu

ABSTRACT

We present a novel language model capable of incorporat-
ing various types of linguistic information as encoded in the
form of a token, a (word, label)-tuple. Using tokens as hid-
den states, our model is effectively a hidden Markov model
(HMM) producing sequences of words with trivial output dis-
tributions. The transition probabilities, however, are com-
puted using a maximum entropy model to take advantage of
potentially overlapping features. We investigated different
types of labels with a wide range of linguistic implications.
These models outperform Kneser-Ney smoothed n-gram mod-
els both in terms of perplexity on standard datasets and in
terms of word error rate for a large vocabulary speech recog-
nition system.

1. INTRODUCTION

Statistical language models (LM) represent a probability dis-
tribution over sequences of words, usually making sequential
decisions from left to right, each prediction dependent on a
limited context. The main challenge comes from data sparse-
ness: many sequences in the test data are unseen in the train-
ing data. Data clustering has shown to be efficient in address-
ing this problem. In widely used n-gram language models,
histories are clustered if they end in the same (n− 1) words.

Previously, there has been some success at incorporating
the use of word equivalence classes into language modeling
[1, 2]. In these models, words are assigned to classes indepen-
dent of the context. But in natural language, a word expresses
different properties in different contexts. Additionally, cor-
rectly understanding the semantic and syntactic function of
each word influences the likelihood of observing a particular
whole sentence. In this paper, we propose a token-based LM,
where tokens are tuples of words and associated labels. This
model accommodates not only word equivalence classes but
also arbitrary contextually-restricted word labels. The new
challenge is that the labels are unknown at test time. Our
model simply computes the marginal distribution of the word
sequence, effectively summing over all label sequences pos-
sible for the test data.

We introduce the Maximum Entropy Token-based Lan-
guage Model (METLM) in Section 2, and then discuss param-
eter estimation and inference algorithms in Section 4. Empir-
ical results, evaluated both in terms of perplexity and in word
error rate (WER) for a state-of-the-art speech recognizer, are
presented in Section 5, followed by conclusions.

2. MAXIMUM ENTROPY TOKEN-BASED
LANGUAGE MODEL

We encode linguistic knowledge in the form of word labels
which can be context dependent. One word can be attached
with multiple labels, each reflecting different properties of the
word or its context. For example, the word ‘football’ in the
sentence ‘he loves to play football’ can be labeled both se-
mantically as a ‘SPORT’ and syntactically as a ‘NOUN’.

In this work, we define a token as a (word, label) pair.
For simplicity, in this article all derivations assume one label
per word occurrence; however, multiple labels can be applied
using the same principle. We call a word ambiguous if it is
part of multiple possible tokens associated with it, that is, it
can have different labels in different contexts. If all words
are unambiguous, the probability of a word sequence wm

1 is
simply

p(wm
1) = p(wm

1 , l
m
1) =

m∏
i=1

p(wi, li|wi−1
1 , li−1

1)

In the general case where some words are ambiguous, the
probability of a word sequence is the sum over probabilities
of all its possible token sequences (i.e., we marginalize over
token sequences):

p(wm
1) =

∑
lm1

m∏
i=1

p(wi, li|li−1
1 , wi−1

1) =
∑
lm1

m∏
i=1

p(si|si−1
1),

(1)
where we use si = (wi, li) to denote a token. Figure 1 shows
a token trellis with bigram dependencies. In this example,
three words in the sentence have multiple possible POS tags,
therefore, we calculate probabilities of all eight possible token
paths of the sentence at test time.

VBN

in
 IN

 CC

 NNS

 VBG
but

owned

kept

rising

falling

socks

stocks

but

and

but_CC

<s>

falling_VBG

but_IN

kept_VBD stocks_NNS

kept_VBN stocks_VBZ
</s>

Fig. 1. An example of token trellis for a sentence

As in word-based n-gram LMs, we assume a simple Markov
process. We use a maximum entropy model for state transi-
tion probabilities:

p(si|si−1
i−n+1) =

exp(
∑

k λkfk(si
i−n+1))

Z(si−1
i−n+1)

(2)

where λk is a real-valued parameter, Z is a normalization
variable which depends only on the n-gram token history,
and fk is a binary feature function. For instance, f(wi−1 =
kept, li = VBG) equals 1 if and only if the word in position
(i− 1) is ‘kept’ and the future word is labeled as ‘VBG’.

In maximum entropy (ME) modeling, each feature is as-
sociated with a constraint. The overall constraint set deter-
mines the model and reflects our understanding of the ob-
served data. For example, features in the form of f(li−1, wi)
imply that the distribution of wi depends on the label in po-
sition (i − 1). Table 1 shows some feature types and their
descriptions. For each position in an n-gram feature, we take
either the word or the label at that position instead of both.
This avoids further data sparseness because label-based fea-
tures have empirical frequencies no lower than those of the
corresponding n-gram word features. Moreover, the label-
based features address data sparseness by classifying words
into different syntactic groups. In our experiments, all thresh-
olds for features by default are zero, that is, as long as a la-
bel/word n-gram appears in the training data and its type is
included, the n-gram is used to form a feature.

Type Description
W unigram word feature. f(wi)
WW bigram word feature. f(wi−1, wi)
WWW trigram feature. f(wi−2, wi−1, wi)
TW bigram feature. f(li−1, wi)
WTW trigram feature. f(wi−2, li−1, wi)
TWW trigram feature. f(li−2, wi−1, wi)
TTW trigram feature. f(li−2, li−1, wi)
T unigram label feature. f(li)
W:T composite unigram feature. f(wi, li)
WT bigram feature. f(wi−1, li)
TT bigram feature. f(li−1, li)
WWT trigram feature. f(wi−2, wi−1, li)
· · · · · ·

Table 1. Feature Types

3. RELATED WORK

The main difference between our models (METLMs) and tra-
ditional ME LMs [3, 4] is that our model predicts tokens in-
stead of words. This change enhances language modeling in
several aspects. First, the new model enables us to integrate
ambiguous word labels into language modeling. We can in-
fer the hidden word labels during test while the traditional
models can only model explicit word labels used in the con-
ditioning context. Second, the new model can integrate future
label information directly. Finally, the new framework can be
applied for unsupervised training.

We have built an LM based on tokens and derived a pa-
rameter estimation algorithm based on the statistics of token
elements. The concept of a token is similar to the superset in
SuperARV LM [5] and the factor vector in the factored LM
(FLM) [6]. The underlying models are quite different. While
they use backoff smoothing techniques to model a conditional
distribution, we apply the maximum entropy principle to in-
tegrate features naturally by a log-linear model.

4. PARAMETER ESTIMATION AND INFERENCE

When all words are unambiguous, i.e., each word is associ-
ated with one label, the training and test process is straightfor-
ward: we simply label both the training and test datasets. In
training, we build a model and estimate parameters by maxi-
mizing the likelihood of the labeled training data. At test time,
we simply predict the token based on the unambiguous token
histories. The advantage of including labels is that we can
have features like f(li−1, wi) which can help alleviate data
sparseness.

The model becomes more complicated when a word can
take on multiple labels. First, we describe the procedure for
the case where we have labeled training data. In training,
we build a model and optimize it to maximize the joint like-
lihood of the labeled training data, that is, the observed to-
ken sequence: LΛ = log p(wm

1 , l
m
1 ; Λ) + log p(Λ|∆) where

Λ denotes the feature set and ∆ denotes the Gaussian prior
[7]. The feature parameters are estimated using the Improved
Iterative Scaling algorithm [3] equipped with the speed-up
method proposed in [8].

It is also possible to train the model with unlabeled train-
ing data. With unlabeled training data, the goal is to maximize
the marginal likelihood of training data using the latent labels:
LΛ = log

∑
lm1
p(wm

1 , l
m
1 ; Λ) + log p(Λ|∆). The model we

have is simply an HMM with fixed output distributions and
can be trained via EM [9]. In the E-step, expected counts
for each transition are added to the expectations of features
activated by this transition. Expected token counts are ac-
cumulated during the forward algorithm. These expectations
develop updated constraints. The M-step calculates new fea-
ture parameters for the next iteration with an embedded ME
training procedure that uses the updated constraints. This EM

algorithm is guaranteed to converge. In the empirical section
of this work, we present results only for labeled training data
because the unsupervised training is too computationally ex-
pensive.

The test data probability can be obtained by a single pass
using the forward algorithm. It sums over probabilities of all
possible token paths of the test data. In this formulation, the
prediction of each word wi is computed as follows:

p(wi|wi−1
1) =

p(wi
1)

p(wi−1
1)

=

∑
li1
p(wi

1, l
i
1)∑

li−1
1

p(wi−1
1 , li−1

1)
(3)

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The dataset we have used to evaluate the perplexity perfor-
mance is from the UPenn Treebank-3 [10]: the parsed Wall
Street Journal (WSJ) collection. All words are lowercased
and all punctuation is removed. Numbers are substituted by
a special word ‘N’. An open vocabulary consisting of 10K
words with an extra ‘UNK’ word is used. The WSJ corpus
contains 24 sections. The first 20 sections are taken as train-
ing data, containing 1M words; the following two sections are
used as held-out data for setting model hyper-parameters, and
the last two sections are test data.

Our baseline model used the modified Kneser-Ney smooth-
ing [11] without any word classes and was built with the SRI
LM toolkit [12]. We first trained a METLM model with word
features only, i.e., by ignoring any label information and tuned
the three feature priors on the held-out data (one prior for each
n-gram). The result was comparable to that of the baseline
model as [7] observed. The baseline perplexity for this model
on the test-set was 144.

We also built the second baseline by interpolating sev-
eral class-based LMs with the dominant POS tags (effectively
making the labels unambiguous). The baseline model was
the interpolation of four Kneser-Ney smoothed LMs. We ex-
tracted counts for word/label n-grams: WWW, WTW, TWW
and TTW. For example, counts associated with the WTW fea-
ture type contained counts of (wi−2, li−1, wi), (li−1, wi) and
(wi). For each feature type, we built a smoothed trigram LMs
using the modified Kneser-Ney smoothing (we trained using
the SRI LM toolkit). Correspondingly, for each test event
(w1, w2, w3), we first labeled all words with their dominant
POS tags and then generated four probabilities p(w3|w1, w2),
p(w3|l1, w2), p(w3|w1, l2) and p(w3|l1, l2) with correspond-
ing LMs. The four sets of scores were interpolated to get the
perplexity 138.

Using the priors optimized for the word-based models, we
then introduced label-based features. Since we fixed the pri-
ors and no longer needed to tune hyper-parameters, we in-
cluded the held-out data in our training set and trained the
model again.

5.2. POS Tags and Data-Driven Word Classes

In our first set of experiments, we explored the modeling ef-
fect, evaluated by perplexity, of using various types of word
classes. We used human-annotated POS tags from the Tree-
bank (truePOS) as well as the dominant POS tags (domiPOS).
The test procedure for truePOS and domiPOS were quite dif-
ferent. In the former, we considered all possible POS se-
quences for the test sentences and summed over them; in the
later, we assumed each word could only be assigned the domi-
nant POS tag and therefore only one POS sequence was avail-
able for each test sentence. For comparison, we also trained
models on the training data labeled with position-dependent
word classes [2] (PD-CLS), where different classes are gen-
erated for different positions using an exchange algorithm, as
well as position-independent classes based on the co-occurrence
of word pairs [1] (PI-CLS). For position-dependent word classes,
we generated 64 classes at each position 1. That means for
each word wi, there were three labels l0i , l−1

i and l−2
i . These

labels were used to compose different types of features ac-
cording to their positions in the feature. For example, in ex-
tracting TWT features, we used the trigram (l−2

i−2, wi−1, l
0
i).

For PI-CLS, we simply generated 64 classes using the SRI
LM toolkit.

Table 2 reports the perplexity for models trained with dif-
ferent word labels and different feature sets. The first column
shows the types of label-based features (denotations of feature
types are explained in Table 1) included in modeling. ‘TW’
means TW features are included in the model. ‘WT+’ means
WT, T and W:T features are used in the model. ‘AA’ means T,
W:T, TW, WT, TT features are included. ‘All’ means T, W:T,
WT, TW, TT, WTW, WWT, TWT, TTW, WTT features are
included. ‘hisT’ means TW, WTW, TWW and TTW features
are included. Note that basic word features W,WW,WWW
are included in every model.

Feature PI-CLS PD-CLS domiPOS truePOS
TW 138 138 137 146
WTW 141 142 139 143
TWW 142 144 143 144
WT+ 138 138 137 136
TW,WT+ 135 138 134 132
WTW,WT+ 136 135 133 132
AA 134 137 133 131
AA, WTW 133 132 130 128
All 129 131 126 122
hisT 138 138 131 N/A

Table 2. Perplexity on UPenn WSJ corpus

Generally, labels were helpful. As more label-based fea-
tures were added to the model, the performance improved.

1The number of classes was selected based on the heldout data.

Most models performed better than the modified Kneser-Ney
baseline which used no label information. Of all different la-
bels, the true POS tag technique improved prediction greatest
with perplexity dropping to as low as 122.

In the first group of experiments in Table 2, we tested each
single type of label-based features. Bigram features, TW and
WT+, improved performance more because they helped more
predictions than the trigram features WTW and TWW. The
second group of experiments showed the performances of dif-
ferent combinations. Generally, more features lead to better
performance.

Note that although we used true POS in the training data,
we did not use any labeling information from the test data.
Our model computed the labeling sequence distribution over
the plain test sentences. To make it clearer, note that results of
using only TW, WTW or TWW features for the true POS tag
set were not improved over the Kneser-Ney baseline. This
is because the POS tags are determined mostly by the word
being predicted rather than the neighboring labels and words.
Excluding future labels in features leads to low-quality label
distributions during the test, and therefore contributes little to
the model.

As we have mentioned in Section 4, our model is differ-
ent from the traditional ME model in that our model predicts
tokens instead of words. This difference enables us to explore
future labels in language modeling (meaning the label of the
word being predicted). We have shown the importance of fu-
ture labels in the ambiguous case (truePOS). Here, we em-
phasize the importance of including future labels in language
modeling by building models excluding these future labels
in the feature set. The results are displayed in Table 2 row
‘hisT’. These results are comparable to our second baseline
obtained by interpolating four Kneser-Ney smoothed LMs us-
ing the same types of features. Even using unambiguous la-
bels (domiPOS and PD-CLS classes), including future label-
related features leads to a decent improvement over excluding
those features.

5.3. Language Modeling with Different Word Labels

In this subsection, we compare the effects of word labels gen-
erated from processes intended to capture different linguis-
tic categories. The word classes used above, the position-
independent and the position-dependent word classes, are de-
termined based on the neighboring two or four words. Here
we introduce three additional data-driven word classes that
are generated from sentential contexts and document infor-
mation.

First, we experiment with the dependency-based word classes
of Dekang Lin [13]. A dependency relationship [14] is an
asymmetric binary relationship between a word and its se-
mantic/syntactic dependents; these are called the head and
modifier, respectively. Figure 2 shows an example of de-
pendency tree with links from the head to the modifiers (c.f.

2. Previous Work
There have been several approaches to automatic thesaurus
construction, mostly for information retrieval. Many algorithms
are based on Harris� Distributional Hypothesis [8] and rely on the
similarity between terms by constructing a similarity matrix.

Salton et al. [19] developed a term dependence model based on
relevance judgements targeted for information retrieval systems.
Term probabilities are estimated using their frequencies in
relevant and non-relevant documents. This model was later
extended to use term discrimination values to compute the
similarity matrix and cluster terms [5]. Low-frequency terms in
clusters were then used to generate the thesaurus classes. These
methods are unsuitable for our problem since relevance
judgements are unavailable.

Bayesian networks have also been used to discover patterns in
term usage. Park [17] modelled the similarity distribution among
terms using a Bayesian network built from local term
dependencies. Compared to previous approaches, this system had
the advantage of handling low-frequency terms.

Jing and Croft [11] proposed a thesaurus construction algorithm
using co-occurrence frequencies (lexical associations) and text
feature recognition such as terms and parts of speech. Using only
syntactic information, Grefenstette [6] used a weighted Jaccard
measure and Lin [13] proposed an information-theoretic similarity
measure to compute the similarity matrix. Chen et al. [4]
proposed a three-step algorithm that performs automatic indexing
and cluster analysis.

3. Resources
The input to our algorithms includes a collocation database and a
similarity matrix, both available on the Internet1.

1Available at www.cs.ualberta.ca/~lindek/demos.htm.

A dependency relationship [9][10][16] is an asymmetric binary
relationship between a word called head, and another word called
modifier. The structure of a sentence can be represented by a set
of dependency relationships that form a tree. A word in the
sentence may have several modifiers, but each word may modify
at most one word. The root of the dependency tree does not
modify any word. It is also called the head of the sentence.

For example, the following diagram shows the dependency tree
for the sentence �John found a solution to the problem�.

John found a solution to the problem.
det detsubj

obj
mod

pcomp

The links in the diagram represent dependency relationships. The
direction of a link is from the head to the modifier in the
relationship. Labels associated with the links represent types of
dependency relations.

We define a collocation to be a dependency relationship that
occurs more frequently than predicted by assuming the two words
in the relationship are independent of each other. In [12], we
described a method to create a collocation database by parsing a
large corpus. Given a word w, the database can be used to retrieve
all the dependency relationships involving w and the frequency
counts of the dependency relationships. Table 1 shows excerpts of
the entries in the collocation database for the words duty and
responsibility. For example, in the corpus from which the
collocation database is constructed, fiduciary duty occurs 319
times and assume [the] responsibility occurs 390 times.

The entry of a given word in the collocation database can be
viewed as a feature vector for that word. Similarity between
words can be computed using the feature vectors. Intuitively, the
more features that are shared between two words, the higher the
similarity between the two words. This intuition is captured by
the Distributional Hypothesis [8].

Table 1. Excerpts of entries in the collocation database for duty and responsibility [12].

DUTY RESPONSIBILITY

modified-
by
adjectives

fiduciary 319, active 251, other 82, official 76,
additional 47, administrative 44, military 44,
constitutional 41, reserve 24, high 23, moral 21,
double 16, day-to-day 15, normal 15, specific 15,
assigned 14, extra 13, operating 13, temporary 13,
corporate 12, peacekeeping 12, possible 12, regular
12, retaliatory 12, heavy 11, routine 11, sacred 11,
stiff 11, congressional 10, fundamental 10, hazardous
10, main 10, patriotic 10, punitive 10, special 10, �

modified-
by
adjectives

more 107, full 92, fiduciary 89, primary 88, personal 79, great 69,
financial 64, fiscal 59, social 59, moral 48, additional 46, ultimate
39, day-to-day 37, special 37, individual 36, legal 35, other 35,
corporate 30, direct 30, constitutional 29, given 29, overall 29,
added 28, sole 25, operating 23, broad 22, political 22, heavy 20,
main 18, shared 18, professional 17, current 15, federal 14, joint 14,
enormous 13, executive 13, operational 13, similar 13,
administrative 10, fundamental 10, specific 10, �

object-of
verbs

have 253, assume 190, perform 153, do 131, impose
118, breach 112, carry out 79, violate 54, return to 50,
fulfill 44, handle 42, resume 41, take over 35, pay 26,
see 26, avoid 19, neglect 18, shirk 18, include 17,
share 17, discharge 16, double 16, relinquish 16, slap
16, divide 14, split 13, take up 13, continue 11, levy
11, owe 10, �

object-of
verbs

have 747, claim 741, take 643, assume 390, accept 220, bear 187,
share 103, deny 86, fulfill 53, meet 48, feel 47, retain 47, shift 47,
carry out 45, take over 41, shoulder 29, escape 28, transfer 28,
delegate 26, give 25, admit 23, do 21, acknowledge 20, exercise 20,
shirk 20, divide 19, get 19, include 19, assign 18, avoid 17, put 17,
recognize 17, hold 16, understand 16, evade 15, disclaim 12, handle
12, turn over 12, become 11, expand 11, relinquish 11, show 11,
violate 11, discharge 10, duck 10, increase 10, �

Fig. 2. An example of dependency relationship

[15]). There are three sets of dependency-based classes for
words belonging to nouns, verbs and adjectives respectively.
In the POS-labeled training data, we use the corresponding
word classes as the word labels and form features based on
these labels.

We also experiment with Lin’s proximity-based word classes
[13]. These are based solely on the linear proximity relation-
ship between words. Labels based on these classes are unam-
biguous because each word belongs to only one class.

Finally, we consider the topic-based word classes as de-
scribed in [16]. This is a vector-based topic model where each
word is represented by a vector in a lower dimensional seman-
tic feature space. The distance between any two words is the
cosine distance of the corresponding two word vectors. Two
words are likely to be clustered together if they tend to be
observed in similar documents, regardless of their syntactic
roles.

We obtained the dependency-based and proximity-based
class data from Lin [17] and the topic-based data from Deng
and Khudanpur [16]. Using the similarity scores assigned un-
der each model, we applied a bottom-up, agglomerative word
clustering algorithm in order to generate equivalence classes.
The algorithm initially treats each word as its own class and
then merges the two classes which are closest. These classes
are merged and then the processes repeats. We continue the
process until we are left with 100 classes. In order to mea-
sure the distance between two classes, we take the average
distance between a bipartite mapping of words contained in
the two classes.

Motivated by the good performance of POS tags, we added
an experiment using the POS tag of the head-word as word la-
bels. For example, the sentence in Figure 2, the word ‘found’
is the head of the word ‘John’ and the word ‘found’ has the
POS tag ‘VBD’, therefore the label for ‘John’ is ‘VBD’2.

We labeled the training data with head-word POS tags
(headPOS), proximity-based word classes (wordProx), dependency-
based word classes (wordDepen) and topic-based word classes
(wordTopic) respectively and built four METLMs with the T,
W:T, TW, WT, TT, WTW features (Table 1)3. The results for
these experiments can be found in Table 3.

The results, in terms of perplexity, for the models with
varying word classes are all very similar. Improvements over
the Kneser-Ney smoothed generative model is relatively small.

2We chose to use the POS tag of the head rather than the head word itself
in order to keep the decoding trellis manageable.

3In each of these experiments, we used only with one particular feature
set to offer a comparison between models with different word classes.

Classes Perplexity
Kneser-Ney 144
PI-CLS 133
PD-CLS 132
domiPOS 130
truePOS 128
headPOS 139
wordProx 136
wordDepen 137
wordTopic 139

Table 3. Perplexities with different word labels

The dependency-based word class model’s relative improve-
ment is worth pointing out as only about one third of the
words had valid classes. 4

5.4. Feature Selection

In this subsection, we present two intuitive methods for threshold-
based feature selection in METLM. We start with a detailed
inspection of the perplexity improvements by considering spe-
cific partitions of test data. We partitioned all predictions
in the test data by the occurrence counts of histories as ob-
served in the training data. Then we calculated the perplexity
exp(1

K

∑K
1 log p(wk|hk)) for each partition where K is the

total number of predictions in that partition.
The result of the position-dependent word class model

(Table 2 row AA, WTW; column PD-CLS), are partitioned
and presented in Table 4 Column PD3. To its left is the par-
titioned trigram Kneser-Ney smoothing result (KN3). To its
right we present results for the 5-gram Kneser-Ney smoothing
LM (KN5). c(h) = c(wi−2, wi−1) is the history count in the
training data and c(h) = c(wi−1) is the backoff history count.
Predictions are assigned to the first row where the condition
is met. The first column (PER) is the percentage of prediction
counts in the test data.

Category PER KN3 PD3 KN5 PD3+
C(h) > 50 25 114 109 100 99
C(h) > 0 41 129 116 125 115
C(h) > 0 27 177 159 174 160
Others 6 310 305 280 295
Total 100 144 132 137 129

Table 4. Perplexities in different partitions of test data

Comparing column PD3 and KN5 with the baseline KN3
in Table 4, note that PD3 achieves a greater improvement in
predictions with infrequent histories. For predictions with fre-
quent histories, long-history features (KN5) are more help-

4This is primarily due to the fact that we only label content words.

ful. We then built the PD3+ model (last column in Table 4)
with the feature set from PD3. A subset of the 4 and 5-gram
word features. wi

i−3 and wi
i−4 from the training data were

selected as features if and only if the trigram history count
(wi−2, wi−1) was over 50. This additional feature set com-
prised only 20% of all 4 and 5-grams in the training data.
Most of these selected features appeared only once. But the
selected 4 and 5-gram observations contributed most of the
improvement achievable by the complete set of 4 and 5-grams
in KN5.

The above experiment suggests a new method for setting
thresholds in feature selection for language modeling. The
threshold is set not based on the absolute count of the feature
itself, but on the frequency of the suffix of the history compo-
nent.

Similarly, we have considered setting thresholds for infre-
quent, redundant features. The basic idea is: if an n-gram fea-
ture appears only once, there is no need to add related higher-
order n-gram features. To be more specific, if (wi−1, wi) ap-
pears only once, we remove wi

i−k, k > 1 from the feature
set. This principle led to a 20% reduction of trigram features
on 1M words of the WSJ Treebank data without affecting the
performance. In our word error rate experiments, we applied
this method to reduce 20% of the 4-gram features from 20M
words of training data.

This second method sets thresholds based on the frequency
of the suffix of the feature. This method divides all singleton
trigrams into two sets. One set is regarded as redundant and
are removed; the other set remains because it contains use-
ful information which is not covered by other features. For
example, assume ‘keeps falling’ and ‘keeps rising’ occur 5
times each in the training data. ‘price keeps falling’ occurs
once and ‘price keeps rising’ never occurs. Given the history
‘price keeps’, the model will prefer ‘falling’. This preference
will not hold if ‘price keeps falling’ is filtered out.

5.5. Evaluation by Speech Recognition Performance

In order to determine if the above improvements carry over
to actual speech-recognition performance, we tested our LM
on a large-vocabulary speech recognition task. We use the
IBM conversational telephony system for rich transcription
(RT-04 CTS system) [18]. The experiment is conducted on
the Fisher data collection (DEV04 English), which contains
36 telephone conversations recorded while two speakers were
talking about a randomly chosen topic. It has utterances from
72 speakers and contains 9,044 utterances and 37,834 words.
A small LM (trained on 4M words) was used to generate word
lattices for this test set.

The IBM RT-04 system used a vocabulary with 30,500
words. Word-lattices were built and then re-scored with a
larger language model based on 150M words of data. Four-
gram generative language models with the modified Kneser-
Ney smoothing were used in the IBM system. The baseline

error rate for the first-pass system (using the small LM) was
14.1%. That score went down to 13.4% after re-scoring with
the LM trained on 150M words.

We utilized the dominant POS tags which were generated
from 3M words of Switchboard Treebank data to label the
training data. We built an METLM including basic word fea-
tures W, WW, WWW, WWWW and T, W:T, TW, WT, TT,
WTW, WWT, WWTW, WTWW features sets. Our model re-
duces the WER to 13.7% and 13.2% when interpolating it
with the original LM. Both improvements were significant
with pvalue < 0.001. In this experiment, 4-gram features
were filtered according to our second principle of feature se-
lection (Section 5.4).

Model w/o interpolation w/ interpolation
KN-4gm 14.1 13.5

METLM-4gm 13.7 13.2

Table 5. Word Error Rates on Fisher Data

6. CONCLUSIONS

We have developed a maximum entropy token-based language
model (METLM) which encapsulates words and their latent
linguistic labels into tokens and exploits parallel dependen-
cies between components of different tokens. The model in-
tegrates all possible local dependencies to help predictions in
a straightforward way. We have shown the effectiveness of
this model by using only POS tags to achieve substantial rela-
tive perplexity reduction (15%) on the UPenn WSJ Treebank
data and a significant WER reduction (0.4%) on the Fisher
data (DEV04 English) over the standard generative backoff
model using modified Knesner-Ney smoothing.

The METLM offers a platform to integrate arbitrary lin-
guistic knowledge which can be represented as word labels.
We have carried out experiments with labels generated from
local contexts, dependency relationships and document-word
co-occurrences. All of these provide useful knowledge in pre-
dictions and have proven to outperform the baseline models.
Particularly, models based on word labels which are based on
local contexts achieve the best performance.

We also presented two new methods of feature filtering by
utilizing their hierarchical structure instead of setting thresh-
olds on absolute counts of features themselves in the training
data, we filtered out n-gram features based on their lower-
order n-gram counts and found them effective in significantly
reducing active feature set size while maintaining predictive
capabilities.

7. REFERENCES

[1] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and
J. C. Lai, “Class-based n-gram models of natural language,”

Computational Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[2] A. Emami and F. Jelinek, “Random clusterings for language
modeling,” in Proc. of ICASSP, vol. 1, pp. 581–584.

[3] A. L. Berger, S. D. Pietra, and V. J. Della Pietra, “A maximum
entropy approach to natural language processing,” Computa-
tional Linguistics, vol. 22, no. 1, pp. 39–71, 1996.

[4] S. Khudanpur and J. Wu, “Maximum entropy techniques for
exploiting syntactic,semantic and collocational dependencies
in language modeling,” Computer Speech and Language, vol.
14, no. 4, 2000.

[5] W. Wang and M. P. Harper, “The superarv language model:
investigating the effectiveness of tightly integrating multiple
knowledge sources,” in Proc. of EMNLP, 2002, pp. 238–247.

[6] J. Bilmes and K. Kirchhoff, “Factored language models and
generalized parallel backoff,” in Proc. of HLT/NACCL, 2003,
pp. 4–6.

[7] S. Chen and R. Rosenfeld, “A gaussian prior for smooth-
ing maximum entropy models,” Tech. Rep. CMUCS -99-108,
Carnegie Mellon University, 1999.

[8] J. Wu and S. Khudanpur, “Combining nonlocal, syntactic and
n-gram dependencies in language modeling,” in Proc. of Eu-
rospeech, 1999, pp. 2179–2182.

[9] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximiza-
tion technique occurring in the statistical analysis of probabilis-
tic functions of markov chains,” The Annals of Mathematical
Statistics, vol. 41, pp. 164–171, 1970.

[10] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Build-
ing a large annotated corpus of english: The penn treebank,”
Computational Linguistics, vol. 19, pp. 313–330, 1993.

[11] S. F. Chen and J. T. Goodman, “An empirical study of smooth-
ing techniques for language modeling,” in Technical Report
TR-10-98, Computer Science Group. 1998, Harvard Univer-
sity.

[12] A. Stolcke, “SRILM – an extensible language modeling
toolkit,” in Proc. Intl. Conf. on Spoken Language Processing,
2002.

[13] D. Lin, “Automatic retrieval and clustering of similar words,”
in COLING-ACL, 1998, pp. 768–774.

[14] D. G. Hays, “Dependency theory: A formalism and some ob-
servations,” Language, vol. 40, pp. 511–525, 1964.

[15] D. Lin and P. Pantel, “Induction of semantic classes from nat-
ural language text,” in Proc. of SIGKDD, 2001, pp. 317–322.

[16] Y. Deng and S. Khudanpur, “Latent semantic information in
maximum entropy language models for conversational speech
recognition,” in HLT-NAACL, May 2003, pp. 56–63.

[17] D. Lin, “Proximity-based thesaurus and dependency-based
thesaurus,” in http://armena.cs.ualberta.ca/lindek/downloads,
2000.

[18] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon, and
G. Zweig, “The IBM 2004 Conversational Telephony System
for Rich Transcription,” in Proc. of ICASSP, 2005, vol. 1, pp.
205–208.

