Leveraging Large Language Models for Exploiting ASR Uncertainty

Pranay Dighe*, Yi Su*, Shangshang Zheng, Yunshu Liu, Vineet Garg, Xiaochuan Niu, Ahmed Tewfik (* = equal contribution) ICASSP 2024 · Apple

Abstract

Problem

Large language models (LLMs) are good at NLP tasks, but for spoken language understanding (SLU), need to handle uncertainty from speech recognition (ASR) errors.

Goal: Make minimal changes to underlying ASR and LLM models, so that they can be shared across multiple tasks.

Proposed Approach: Prompt LLMs with n-best list of ASR hypotheses instead of error-prone 1-best hypothesis.

Figure: A toy NLP task which demonstrates that prompting the LLM with n-best ASR hypotheses allows it to exploit ASR uncertainty to better solve the downstream NLP task.

Tasks and Datasets

Task 1: Device-Directed Speech Detection (DDSD)

Definition: Binary classification task to identify if a spoken utterance is directed towards a voice assistant or a human.

Dataset: Internal dataset with train (weakly-labeled, ~107k utterances per class) and eval (humangraded, 12,771 device-directed, 2,274 humandirected) partitions.

Task 2: Keyword Spotting

Definition: Multi-class classification task to identify which command keyword (e.g. "yes", "no", "up", "down") if any, was spoken in the utterance. **Dataset:** Google Speech Commands (GSC) 35 keywords, 10 considered in-domain commands. Train partition (~85k utterances) and test partition (~11k utterances).

Proposed ASR+LLM Approach

Approach

Obtain n-Best ASR hypotheses with costs

- Condensed representation of ASR lattice.
- Hypotheses separated by newlines.
- Costs indicate ASR confidence.

2. Design prompting templates

- Explain concept of n-best lists to LLM.
- Task description and input formatting.

utterance-pro 1-best

n-best

Ground-truth

Table: Prompting Template for DDSD Task

Prefix	Infix	Suffix		
1-best: "Determine whether the following spoken utterance is directed towards a voice assistant or a human being."	"Typical spoken utterances directed towards the voice	binary-target: "Answer only from the following categories ['1', '0'] where '1' indicates that the utterance is directed to- wards the voice assistant and '0' indicates that the utterance is directed towards a human being."		
<i>n</i> -best: "In this task, we provide an <i>n</i> -best list of ASR hypotheses for a spoken utterance. Each of the hypothesis is separated by a newline character. The cost of each hypothesis is at the end in the format '[cost]' where a low cost indicates that we are more confident about that ASR hypothesis. Determine whether the following spoken utterance is directed towards a voice assistant or a human being by taking into account all the <i>n</i> -best hypotheses."	assistant are commands to fulfill a task or queries to get some information."	0-100 scale: "Answer on a scale of 0 to 100 where a score of '100' indicates that the utterance is directed towards the voice assistant and '0' indicates that the utterance is directed towards a human being. Your answer should only contain an integer between 0 and 100."		
 3.Finetuning Procedure Base Model: a Vicuna-7B-v1.3, a pre-trained instruction-tuned LLaMA large language model, as the base model. Finetuned Low-Rank Adaptation (LoRA) adapters on the LLM. 	 4.DDSD Classifier Binary DD (0/1) for de (0/1) for de 0-10 on 0-100 model). 	fication Tasks: OSD: Finetuned to output binary labels levice/human directed 00 DDSD: Finetuned to output scores scale (from a teacher LatticeRNN		
• LORA adapters have only 4.1M parameters (0.06% of LLM's 7B parameters) which makes finetuning compute efficient.	5.Keyword Spo keywords or "(otting Task: Finetuned to output 10 OOV".		

Analysis and Results

DDSD Analysis		Binary Target				100-Scale Task			
		Base Model		Finetuned		Base Model		Finetuned	
 Prompting w/o finetuning works best for n=1, 		TPR	FPR	TPR	FPR	FPR95	EER	FPR95	EER
and only for hinary classification task	1	91.5	30.0	90.5	8.3	84.7	32.0	53.6	10.7
and only for binary classification task.	2	85.1	32.7	91.3	5.2	90.3	55.2	30.0	8.2
 With finetuning, the LLM can leverage n-best 	4	87.2	46.4	91.8	5.2	85.8	46.0	13.1	7.6
ASR hypothesis for better performance for both		85.9	43.0	91.8	4.7	81.9	36.3	11.3	7.5
	16	85.0	42.0	92.0	4.9	84.7	36.7	10.5	7.4
binary as well as a 0-100 scale task.		Table: DDCD Dreaulta							

Table: Results on Keyword Spotting Task

Examples of some corrections made by the LLM are "app" \rightarrow "up", "Lyft" \rightarrow "left", and "call" \rightarrow "go"

System	yes	no	up	down	left	right	on	off	stop	go	OOV	Total Acc.
Baseline	98.6/98.1	83.4/98.3	99.6/55.1	100.0/87.2	100.0/88.3	100.0/87.1	100.0/78.5	99.5/90.3	99.0/98.8	99.7/81.3	93.0/99.3	94.5
FT n=1	98.3/98.6	94.4/95.6	97.8/84.5	99.5/89.4	99.8/95.2	99.7/97.5	98.2/82.3	96.4/93.3	99.0/99.0	97.9/91.3	96.4/99.5	97.0
FT n=8	99.3/99.0	94.1/98.0	97.8/85.7	99.5/92.1	99.0/95.2	99.7/98.2	98.5/83.8	97.7/93.5	99.3/98.8	99.0/94.8	96.9/99.5	97.5

Table: Examples of n-Best ASR hypotheses

ompt	GSC	DDSD
	"hive"	"shuffle play U2"
	"hive [-47.8]	<i>"shuffle play U2 [-84.4]</i>
	five [-46.8]	shuffle play Kito [-83.1]
	bye [-44.0]	shuffle play Buku [-82.9]
	hive [-31.5]"	shuffle play Kitu [-82.8]"
1	"five"	"shuffle play U2"

Table: DDSD Rresults

Results

LLM Response with and without Finetuning

DDSD Pror
+ "score of
game [-135.
LLM with
likely hypot
[-144.2]'. 7
most likely
with this hyp
very confide
is more likel
being. The
is a sports-
Therefore, the
LLM with

Figure: DDSD ROC Curve using Scale 0-100 Outputs

	100
(in %)	98
Rate	96
ive	95
Posit	94
True	92
	90

Conclusion

References

mpt: Task-prompt (n-best Prefix + Infix + binary-target Suffix) f the Hawaii game [-144.2] \n what's the score of the Hawaii

out Finetuning: "Based on the provided n-best list, the most thesis for the spoken utterance is: 'score of the Hawaii game This hypothesis is the first in the list, indicating that it is the interpretation of the spoken utterance. The cost associated pothesis is '-144.2', which suggests that the ASR system is not ent about this hypothesis. Given the content of the utterance, it ly to be directed towards a voice assistant rather than a human utterance contains a question about the Hawaii game, which -related topic that is commonly addressed to voice assistants. the answer is '1'."

Finetuning: "1"

 LLMs can effectively leverage n-best ASR hypotheses via prompting and LoRA finetuning.

• Significant improvement over just using 1-best ASR for intent classification and keyword spotting tasks.

 Efficient method to exploit ASR uncertainty without redesigning ASR and LLM models.

• Hu et al. "LoRA: Low-rank Adaptation of Large Language Models." ICLR 2022. • Warden. Speech Commands Dataset. arXiv 2018.