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Results

Tasks and Datasets

Approach 

1. Obtain n-Best ASR hypotheses with costs 
• Condensed representation of ASR lattice. 
• Hypotheses separated by newlines. 
• Costs indicate ASR confidence. 

2. Design prompting templates 
• Explain concept of n-best lists to LLM. 
• Task description and input formatting.

3.Finetuning Procedure 
• Base Model: a Vicuna-7B-v1.3, a pre-trained 

instruction-tuned LLaMA large language 
model, as the base model. 

• Finetuned Low-Rank Adaptation (LoRA) 
adapters on the LLM. 

• LoRA adapters have only 4.1M parameters 
(0.06% of LLM's 7B parameters) which makes 
finetuning compute efficient.
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Problem 
Large language models (LLMs) are good at NLP 
tasks, but for spoken language understanding (SLU), 
need to handle uncertainty from speech recognition 
(ASR) errors. 

Goal: Make minimal changes to underlying ASR and 
LLM models, so that they can be shared across 
multiple tasks. 

Proposed Approach: Prompt LLMs with n-best list 
of ASR hypotheses instead of error-prone 1-best 
hypothesis. 

LLM Response with and without Finetuning

Task 1: Device-Directed Speech Detection (DDSD) 

Definition: Binary classification task to identify if a 
spoken utterance is directed towards a voice 
assistant or a human. 
Dataset: Internal dataset with train (weakly-labeled, 
~107k utterances per class) and eval (human-
graded, 12,771 device-directed, 2,274 human-
directed) partitions. 

• LLMs can effectively leverage n-best ASR   
hypotheses via prompting and LoRA finetuning. 

• Significant improvement over just using 1-best ASR 
for intent classification and  keyword spotting tasks. 

• Efficient method to exploit ASR uncertainty without 
redesigning ASR and LLM models.
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Figure: A toy NLP task which demonstrates that prompting the LLM with n-best 
ASR hypotheses allows it to exploit ASR uncertainty to better solve the 

downstream NLP task.

Task 2: Keyword Spotting 

Definition: Multi-class classification task to identify 
which command keyword (e.g. "yes", "no", "up", 
"down") if any, was spoken in the utterance. 
Dataset: Google Speech Commands (GSC) 35 
keywords, 10 considered in-domain commands. Train 
partition (~85k utterances) and test partition (~11k 
utterances).

Table: n-Best ASR hypotheses

Table: n-Best ASR hypotheses

Table: Examples of n-Best ASR hypotheses

Table: Prompting Template for DDSD Task

4.DDSD Classification Tasks: 
• Binary DDSD: Finetuned to output binary labels 

(0/1) for device/human directed 
• Scale 0-100 DDSD: Finetuned to output scores 

on 0-100 scale (from a teacher LatticeRNN 
model). 

5.Keyword Spotting Task: Finetuned to output 10 
keywords or “OOV”.

Analysis and Results

DDSD Analysis 
• Prompting w/o finetuning works best for n=1, 

and only for binary classification task. 
• With finetuning, the LLM can leverage n-best 

ASR hypothesis for better performance for both 
binary as well as a 0-100 scale task. 

Table: Results on Keyword Spotting Task 
 Examples of some corrections made by the LLM are “app”→“up”, “Lyft”→“left”, and “call”→“go”

Figure: DDSD ROC Curve using Scale 0-100 Outputs
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